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Abstract

The behaviour of groups consisting of individual agents capable of making decisions is

affected by a complex balance between actions that directly benefit the individual, and

those that benefit the group at large. The effect of how an individual interacts with

(and interprets interactions from) its peers can be simulated using a robotic “swarm” of

individuals. The purpose of this project is to develop a computer simulation to model

swarm behaviour. The project is focused on both modelling of swarms, and swarm

learning.

A computer program capable of performing simulation of swarm behaviour in mobile

robotic agents was developed. These agents were able to move around in a simulated

environment and interact with the environment and their peers. Following the creation

of the simulator, the simulated agents were given simple pre-set rules to follow, in order

to replicate swarm behaviour observed in nature. It was seen that these simple rules,

when implemented in a global context, led to complex emergent behaviours. The swarm

behaviours observed included clustering and chain formation.

After swarm behaviours had been successfully modelled, a reinforcement learning algo-

rithm was developed to create simple AI behaviour in individual swarm members. The

task assigned to agents was that of learning to explore a given environment as quickly

as possible, all the while avoiding collisions with obstacles and other agents. The agents

were not given any guidance on how to achieve this task, but were free to learn through

trial and error. Although initially colliding with obstacles in the process of learning, the

agents were eventually able to teach themselves how to predict and avoid collisions.

The final part of the project was the creation of a distributed resource allocation sce-

nario, where agents equipped to extinguish fires were required to explore an environment

and extinguish any fires they encountered. The simulations demonstrated the need for

inter-agent cooperation in cases where single robots were not capable of extinguishing

large fires. Two different cooperative approaches were analysed and compared, with the

possibility of using AI to elicit self-organised cooperation being explored.
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Chapter 1

Executive Summary

Introduction

The purpose of this report is to document a project that was undertaken to build a

computer simulation of swarm behaviour, as well as a reinforcement learning algorithm

for swarm members.

The basic premise of swarm theory is that swarm members act both as individual agents

and as a collective. In the most general sense, an agent can be considered as any entity

capable of making decisions based on observed phenomena. The most common types

of agency encountered everyday are in the natural world: other people, animals and

all living matter down to the simple gene. However, computer programs can also be

considered agents, because they have the ability to make decisions based on observation.

One of the goals of this project is to explore the way in which agents interact on a large

scale. When a large number of such agents find themselves in an environment together,

complex inter-dependencies and network effects can emerge. This project seeks to model

and study those interactions.

The agents modelled in this project are small, autonomous, mobile robots, as shown in

Figure 1.1 on the following page. The robots are equipped with two wheels and a number

of infrared proximity sensors. A key characteristic of these robots is that they are not

capable of communicating between themselves. This creates interesting dynamics which

are explored in this report.

The specific goals of the project were to:

1. Design, program and test a simulator capable of modelling individual robotic agent

behaviour, as well as large swarms of robotic agents (up to 50 agents).

1
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Figure 1.1: Autonomous mobile robot.

2. Simulate swarm behaviour by giving agents simple rules to follow.

3. Program a reinforcement learning algorithm that is able to interact with the simu-

lator and produce AI behaviour in each simulated agent.

Robotic Agent Simulator

In order to model the swarm behaviour in mobile robots, it was necessary to program a

computer simulator. Research was undertaken into existing best practices in this field,

using which information a simulator was created. A complete physical model of the

simulated environment was created, and algorithms designed to handle collisions, robot

locomotion and operation of simulated sensors.

To assist and expedite future work with the simulator, a number of additional features

were added, beyond the initial specification. The most important of these features was

to separate the simulation and visualisation operations, so that large computationally-

intensive simulations (which would run too slowly to observe in real-time) could be ex-

ecuted in the background, with visualisation taking place at the user’s convenience and

at a speed not affected by the complexity of the simulation. Figure 1.2 on the next page

shows the basic simulated robot developed and used throughout the project, and a typical

simulated environment with a number of dispersed robotic agents. Further, a key design

characteristic of the simulator is its extensibility: that is, new robot configurations or

sensor types can easily be created, allowing simulation of a wide range of hardware.

Chapter 1: Executive Summary 2
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infrared sensors

Simulated robot Simulated environment

Figure 1.2: Representation of a simulated robot and a typical simulated environment.

Simple Swarm Behaviour

Once the basic simulator had been created, attention was turned to replicating swarm

behaviour. In natural swarms, individual agents follow basic rules such as “steer towards

the group centroid” to cause agglomeration, or “match the velocity of your observable

peers” to form long chains. The simulator was used to give each simulated robotic agent

simple instructions such as these, with the result being complex emergent behaviours.

Three such rule-based approaches were implemented: exploration with collision avoid-

ance, agglomeration and chain formation. Results of these simulations are shown in

Figure 1.3 on the following page.

Some of the emergent behaviours observed were completely unexpected. For example, in

the chain formation simulations, chains were observed to decompose, merge with other

chains and reorganise after encountering obstacles. The occurrence of these unexpected

behaviours highlight the utility of a swarm simulator: it is often difficult or even impos-

sible to predict the effect of even the simplest rules when they are applied in a global

context. Examples of this phenomenon may be found in many domains from economics

to the formation of mobs. In many respects, the behaviours observed closely follow those

found in nature, for example the way in which a school of fish can grow, shrink and

reorganise.

Chapter 1: Executive Summary 3
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Exploration with Collision Avoidance

Agglomeration

Chain Formation

Figure 1.3: Simulation of simple swarm behaviours.
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Figure 1.4: Frequency of collisions between agents and obstacles as agents learn to avoid
collisions.

AI Behaviour

Following the simulation of swarm behaviour, a reinforcement learning algorithm was

written to produce simple AI behaviour in each swarm member. The task assigned to

agents was that of learning to explore a given environment as quickly as possible, all the

while avoiding collisions with obstacles and other agents. The distinguishing characteris-

tic of the AI approach is that agents were not given any guidance on how to achieve this

task, but were free to learn through trial and error. Agents were rewarded if they explored

the map in a straight line at high speed, and punished (assigned negative reward) if they

approached obstacles too closely. Although initially colliding with obstacles frequently

while in the process of learning, the agents were eventually able to teach themselves how

to predict and avoid collisions. A plot of the frequency of collisions versus simulation

time is shown in Figure 1.4.

In many respects, the collision avoidance behaviour that agents were able to teach them-

selves was very similar to the rule-based approach that had previously been implemented.

Once agents had spent sufficient time learning, they were able to avoid collisions almost

permanently, as reflected in the graph. However, the method by which they avoided head-

on collisions was observed to be quite different from the rule-based approach that had

previously been implemented. When collision avoidance was programmed into behaviour-

based agents, the rule given to them was to turn away from any obstacles detected by

their lateral sensors, and choose a random direction of turn when an obstacle was di-

rectly ahead. In contrast, when an AI agent was heading straight for an obstacle, it was

Chapter 1: Executive Summary 5
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sometimes observed to first move directly backwards and then turn a small amount and

continue moving in a different direction.

The emergence of this unanticipated method of achieving a task, which a human program-

mer can easily prescribe using a rule-based approach, is an indication of the importance

of machine learning in situations involving large numbers of individual agents. In particu-

lar, a strong case can be made for the use of artificial intelligence techniques in simulated

agents to model real-life swarm behaviour, such as the actions of investors during a stock

crash or the flocking of birds to reduce aerodynamic drag.

Fire-fighting Task

The final part of the project was the creation of a distributed resource allocation scenario,

where agents equipped to extinguish fires were required to explore an environment and

extinguish any fires they encountered. The simulations demonstrated the need for inter-

agent cooperation in cases where single robots were not capable of extinguishing large

fires.

The basic model was an environment (such as a factory or warehouse) with a number of

distinct locations to which a fire had spread. These could represent combustible mate-

rials such as chemical stores or any other flammable material. Robotic agents deployed

in such an environment are required to explore the map as quickly as possible, while

extinguishing any fires they encounter. However, when extinguishing a fire, a robot can

suffer component damage from excessive heat. Therefore, a robot is required to leave

a fire if its temperature should become too high. It then needs to spend a period of

time ‘cooling down’ before returning to fire-fighting duty. Because some fires will be too

large for a single robot to extinguish alone, the only way of achieving the group goal of

eliminating all fires is by working cooperatively. However, each agent is also concerned

with preservation of its own hardware, resulting in intricate group dynamics. A number

of still frames depicting cooperative behaviour are shown in Figure 1.5 on the following

page.

Two different cooperative approaches were analysed and compared. The first such ap-

proach was for the simulated robots to leave a fire and look for another, possibly smaller

fire if they were at first unsuccessful at extinguishing it. The second approach was for

robots to try extinguish the same fire until it had been completely extinguished. While the

simulation results that were obtained indicated the second approach would be favourable

under certain circumstances, the significance of the fire-fighting scenario is not in this spe-

cific result, but rather in the fact that the scenario creates an environment favourable to

the formation of swarms. As this task was beyond the requirements of the project, there

Chapter 1: Executive Summary 6
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agent approaches fire attempts to extinguish fire retreats from fire

first agent reapproaches
second agent arrives

agents cooperatively
extinguish fire

agents move away
from extinguished fire

Figure 1.5: A series of frames depicting cooperative fire-fighting behaviour.

was not sufficient time to implement AI behaviour in the fire-fighting agents. However, it

is believed that programming such AI behaviour into the agents could unveil unexpected

techniques for solving the problem, perhaps even with direct practical applications.

Conclusions and Recommendations

The phenomenon of swarm behaviour is somewhat remarkable: a large number of indi-

vidual agents, each acting in the interest of their own self-preservation, self-organising

into swarms that are able to cooperatively realise individual and group goals.

It has been shown how simple rules, when implemented by a number of autonomous

agents on a large scale, can lead to the emergence of behaviour that is, at worst, un-

expected, and at best, provides novel insights into better ways of achieving group-based

outcomes. The use of artificial intelligence in creating agents capable of learning based on

feedback from their environment has been explored, with the result that they are often

able to determine better methods of task execution than human designers attempting to

analytically decompose such tasks into individual behaviours.

A number of recommendations are made to improve the simulator and to further inves-

tigate the topics presented in this report. The most important of these are to optimise

the simulator’s contact model to increase simulation speed, investigate different learn-

ing approaches (such as evolutionary algorithms) and to implement a state-action space

Chapter 1: Executive Summary 7
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encoding capable of differentiating between agents and obstacles.

It is hoped that this report will leave the reader with a greater appreciation of the

prevalence of swarm behaviour across multiple domains, as well as an understanding of the

important role played by computer simulation in modelling these complex interactions.

Chapter 1: Executive Summary 8
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Chapter 2

Introduction

The purpose of this report is to document a project that was undertaken to build a

computer simulation of swarm behaviour, as well as a reinforcement learning algorithm

for swarm members.

This chapter provides an introduction to the concepts of agency, learning and self-

organisation, with an emphasis on the biological origins of these ideas. The application of

these constructs to two classes of robotic models will be considered, followed by an adap-

tation of these ideas into a concrete problem formulation for the project. The chapter

concludes with a plan of development for the remainder of the report.

2.1 Agency and Learning

In the most general sense, an agent can be considered as any entity capable of making

decisions based on observed phenomena [1]. This definition of agency is usually extended

to include the ability to adapt how decisions are made, based on past experiences. The

most common types of agency encountered everyday are in the natural world: other

people, animals and all living matter down to the simple gene.

However, the ability to make decisions is not limited exclusively to that which is living:

computer programs can also be considered agents, because they have the ability to make

decisions based on observation. That is not to say that all computer programs should be

considered agents, however. Programs that follow a static, deterministic approach from

start to finish, always producing the same output for a given output show no signs of

agency. Therefore, the notions of agency and learning are strongly linked [2].

The goal of this project is to explore the way in which agents interact on a large scale.

Just like a human baby learns and adapts to its environment as it grows older, so agents

9
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attempt to adapt to their environment for their own advantage. When a large number of

such agents find themselves in an environment together, complex inter-dependencies and

network effects can emerge. This project seeks to model and study those interactions.

2.2 Self-organisation

Perhaps the most interesting feature observed in large groups of biological agents is the

phenomenon of self-organization, or the ability of autonomous agents to coordinate their

efforts to effect some outcome only achievable by this coordination [1, 3]. This process

can be witnessed almost anywhere in nature: the formation of birds into flocks to avoid

predators and reduce aerodynamic drag; the cooperative hunting patterns of wolves or

the cooperative transport mechanisms used by ants and termites [4].

The significance of these and other behaviours is that they are not centrally coordinated,

but rather emerge from the interaction of local rules applied in a global context [1, 4].

These emergent behaviours are even more remarkable because the rules that produce

them are often very simple, yet the behaviour that emerges can be extremely complex.

In many cases, so simple are the rules that individual agents are not even aware that

their actions are leading to a phenomenon of group self-organisation. For example, in

ant colonies, worker ants form a protective boundary around the body of the queen by

dropping items at various distances from her. The remarkable part about this behaviour

is that the ants do not appear to be intentionally building a protective barrier around

the queen. Instead, the queen exudes a particular pheromone which, when encountered

above a certain concentration by worker ants, instinctively causes them to drop whatever

they are carrying. This effect has been reproduced using the pheromone in the absence

of an actual queen [4].

2.3 Mobile Robotic Agents

Following from the observation that self-organising groups in nature are composed of a

large number of individually-acting biological agents, there has been a trend in robotics

in the last two decades to create and study mobile robotic agents [1, 5, 6]. It is hoped

that these agents will be able to interact and produce group dynamics similar to those

observed in nature. A key facet of this approach is the use of artificial intelligence and

machine learning, in particular, to allow these agents to discover unexpected ways of

solving problems by working cooperatively.

Each individual mobile robot, therefore, can be viewed as an agent. In this case, the

Chapter 2: Introduction 10
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term ‘agent’ may be used interchangeably with ‘robot’. Indeed, this is the terminology

used throughout most of this report. However, it need not be the case that the agent

and physical robot boundaries coincide. A complex robot may make use of a number of

internal agents operating cooperatively with each other, although to an external observer

there may appear to be only one ostensible agent. This is the basis of humanoid robotics.

2.4 Humanoid Robotics

The notion that a single system may be composed of several internal agents working to-

gether forms the basis for many approaches in humanoid robotics [7]. Broadly, humanoid

robots are those which physically resemble parts of the human body either in appear-

ance, function, or both. Examples include robotic arms modelled on the human hand,

and robots that perform complex anthropomorphic behaviours such as playing soccer.

The application of agency and learning to such robots is in the decomposition of the robot

into several agents, which learn to work together to produce an effective outcome for the

collective (which is the entire robot). For example, humanoid robots that are designed

with articulated leg-like appendages are able to simulate legged locomotion by treating

each joint as an individual agent, and having the agents interact cooperatively to ensure

that robot moves forward without losing balance. Thus, on a conceptual level, these

agents may be regarded as exhibiting swarm behaviour. Indeed, many of the techniques

and algorithms used to simulate such behaviour are either identical or very similar to

those used for swarming in mobile robots.

2.5 Problem Formulation

The initial objectives of this project were to create a swarm behaviour simulator and

reinforcement learning system. These goals are sufficiently open-ended for their imple-

mentation to take on a variety of forms. As has been mentioned, there are a number of

contexts in which the interaction of individual agents gives rise to swarm behaviour.

In the initial stages of the project, research was undertaken into the various forms the

project could assume. Ideas such as simulation of legged locomotion and robotic arms

were considered as broad interpretations of swarm behaviour in autonomous agents. It

was ultimately decided, however, to proceed with the swarm behaviour simulator in the

context of modelling mobile robotic agents.

Chapter 2: Introduction 11
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2.5.1 Project Objectives

The overall objective of this project is to simulate swarm behaviour. In order to do this,

a program is first required that can model the interactions between just a single agent

and a simulated physical environment. Once such a basic platform has been created, it

should be extended to allow for multiple-agent interactions. At that stage it is possible

to begin giving the simulated agents pre-set behaviours on a situation-by-situation basis.

These simple rules should allow the agents to exhibit swarm behaviour on the group

scale. Once these rule-based behaviours have been implemented, an AI approach should

be taken by creating a reinforcement learning algorithm to create learnt behaviours in

each individual agent.

Concisely, the objectives of this project are stated as follows.

1. Design, program and test a simulator capable of modelling individual robotic agent

behaviour, as well as large swarms of robotic agents (up to 50 agents).

2. Simulate swarm behaviour by giving agents simple rules to follow.

3. Program a reinforcement learning algorithm that is able to interact with the simu-

lator and produce AI behaviour in each simulated agent.

2.6 Plan of Development

Following this introductory chapter is a short survey of the basic concepts of swarm

behaviour to familiarise the reader with the topic, with attention given to natural and

robotic swarms.

In Chapter 4, the physical simulator that was created for the project will be introduced

and explained in-depth. The chapter begins by presenting a survey of existing simulators

and best practices in the field, in order to inform and justify the design decisions that

were made. Following this, the physical model that was used in the simulator will be

explained. Attention will be then given to the details of the specific implementation,

complete with comprehensive performance testing.

Chapter 5 will present the theory of behaviour-based control, with descriptions of the var-

ious behaviours that were implemented. The results of simulations using these behaviours

are presented and analysed.

Chapters 6 and 7 will present the theory of neural networks and reinforcement learning,

laying the groundwork for understanding the AI simulations that are to follow. These

chapters are largely based on a review of relevant literature.
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Chapter 8 will present the reinforcement learning algorithm that was developed during

this project. The specifics of its implementation will be explained and related to their

theoretical foundations in the foregoing chapters. The results of the corresponding sim-

ulations will then be presented and discussed.

The application of swarm behaviour to a unique distributed resource allocation problem

will be described in Chapter 9. The results of simulations will again be presented and

discussed.

Finally, a critical assessment of the project will be given in Chapter 10, reviewing the

work that was performed and making recommendations for future work. The conclusion

to the report follows in Chapter 11. Attached to the report are a number of appendices

which provide further details not deemed appropriate for the main report.

The approach of presenting literature on all relevant topics in a single chapter was not

taken. Instead, relevant literature has been grouped with the appropriate practical work

and is presented alongside such work. In general, an attempt has been made to avoid

forward references in the text. However, this is not always possible, and in such circum-

stances a brief description of the ulterior concept is given together with the reference.
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Chapter 3

Swarm Behaviour

This chapter aims to give a brief, non-technical overview of various swarm behaviour

concepts to serve as an introduction to the topic. It begins with background on swarms

found in nature and proceeds to describe some of the behavioural patterns observed in

biological swarms. Finally, the concept of robotic swarms is introduced, and three robotic

swarm platforms are briefly surveyed.

3.1 Natural Swarms

Swarm behaviour is prevalent throughout nature. The phenomenon of individual biolog-

ical agents forming groups can be seen in, inter alia, flocks of birds, schools of fish, herds

of antelope, pods of dolphins and nest-building ants [4]. Perhaps the most remarkable

aspect of such collective animal behaviour is that group cooperation can emerge purely

as a result of the interaction of local rules applied in the group context. A number of pos-

sible explanations have been presented as to the function of these emergent behaviours,

which will be briefly reviewed.

Protection from predators.

It has been proposed that antelope move in herds and fish swim in schools in order

to reduce their chances of being attacked by predators [4]. A number of mechanisms

may be responsible for this effect. The presence of a large group of rapidly moving

individuals may cause a sensory overload for a potential predator. Large groups are

able to identify predators faster and more consistently than an individual acting

alone, and spread this information rapidly, thus protecting the entire group. Finally,

the group itself may be stronger than the individual members acting alone, and thus

pose a threat to potential predators [4].
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Improved access to resources.

Studies on certain types of fish have found that groups of fish were able to find

a patch of food faster than the same individuals acting separately. This can be

generalised to resources in a broad sense: by acting in the group’s interest and

sharing information, it is possible for all individuals in the group to find resources

faster than if acting alone [4].

Increased locomotion efficiency.

For animals moving in a fluid environment, there is a distinct advantage to moving

in a group: reduction in drag force. Ducklings have been shown to save energy

when swimming in a line [8], and reduction in aerodynamic drag could be partly

responsible for the flocking behaviour of birds and shoaling of fish.

Social interaction.

Biological agents may also benefit from the social aspects of being near to other

animals of the same species, including possible reproductive advantages [4].

3.2 Observed Behaviours

A number of behaviours and formations are observed in natural swarms. This section

provides an inexhaustive account of some of the most prevalent phenomena.

3.2.1 Agglomeration

Agglomeration can be defined as the assembly of individual agents into a high-density

group. While agglomeration generally refers to a single, large group, it can also include a

greater number of smaller clusters. Figure 3.1 on the next page shows ants progressively

assembling into a number of distinct groups.

3.2.2 Chain formation

Chain formation is a leader-following behaviour where agents move one behind the other.

Leaders may be chosen explicitly, as in the case of ducklings following their mother,

shown in Figure 3.2 on the following page, or the leader may emerge as a result of group

interactions.
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Figure 3.1: Progressive agglomeration of ants into distinct clusters. Reproduced from [9].

Figure 3.2: A number of ducklings form a chain by following their mother. Reproduced
from [10].

3.2.3 Perimeter formation

Perimeter formation may occur for a number of reasons, including protection of weaker

group members, guarding of resources or improved circumferential awareness. Figure 3.3

shows a number of soldier termites guarding the entrance to their nest while workers

transport food inside.

Figure 3.3: A number of soldier termites form a perimeter around a tunnel leading to the
nest while workers transport food inside. Reproduced from [11].
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Figure 3.4: A group of ants cooperatively transporting a cockroach. Reproduced from
[12].

Figure 3.5: A flock of auklets. Reproduced from [13].

3.2.4 Cooperative Transport

If an ant encounters a food source that is too large for the individual to move alone,

that ant will recruit nestmates to assist with transportation of the prey back to the

nest [3]. A remarkable emergent behaviour occurs as the group attempts to align itself

and synchronise the members’ individual efforts to move the prey, in the absence of real-

time communication [3]. Figure 3.4 shows a group of ants attempting to move a cockroach.

The notion of cooperative transport could also be generalised to other cooperative goal-

achieving behaviours, such as building or repairing ant nests and termite mounds.

3.2.5 Flocking

Flocking is a behaviour most commonly associated with birds, but can be generalised

to other collective animal locomotion, such as shoaling of fish, herding of antelope or

swarming of bees. It has been shown by computer models that flocking is the result of

each individual in a group following simple rules, with the result being complex emergent

behaviour. Flocking can be differentiated from agglomeration in that flocks generally

continue to move, whereas agglomerated clusters do not. Figure 3.5 shows a flock of

auklets in flight.

Chapter 3: Swarm Behaviour 17



University of Cape Town Department of Mechanical Engineering

Figure 3.6: A number of I-Swarm microrobots gather around a screw. Reproduced from
[14].

3.3 Robotic Swarm Platforms

Swarm robotics is a relatively new field of research, aimed at reproducing in robots

the swarm behaviours and swarm intelligence seen in nature [5]. This is achieved by

using a (typically large) number of autonomous robotic agents in a distributed fashion.

These robots are free to interact with each other, much like biological agents. They

are also often given some kind of artificial intelligence in order to readily adapt to their

environments [5]. Potential applications for swarm robotics include tasks that require

miniaturisation, such as sensing tasks in the human body. Other uses include distributed

mining and agricultural foraging.

This section will present a short selection of existing swarm robotics platforms; that is,

the physical robots on which swarm robotic software can be based. It is by no means

comprehensive, but serves to provide the unacquainted reader with an overview of the

existing technology.

3.3.1 I-Swarm

The I-Swarm project is an initiative by a number of European universities to produce

micro robots capable of functioning in a VLSAS (very large-scale artificial swarm) of up

to 1000 nodes [14]. The size of these robots, shown in Figure 3.6, is approximately 3 ×
3 × 2 mm3.

The robots are powered by micro solar cells, which provide energy for miniaturised wire-

less communication, locomotion and actuators. The robots have integrated circuits (ICs)

to provide complex control control, such as on-board intelligence [15].
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Figure 3.7: A group of s-bots traverse forest terrain. Reproduced from [17].

3.3.2 Swarm-bots Project

The swarm-bots project is a community effort to build swarm robots, mainly for the

purpose of shape formation and navigation of difficult terrain [16]. The robots, known as

s-bots, are 116mm in diameter and 100mm high, and are shown in Figure 3.7. The loco-

motion system makes use of tracks and wheels with differential drive, allowing stationary

turns and traversing of challenging terrain.

The main body of the s-bot is equipped with a number of sensors for navigation, such as

infrared proximity sensors, light sensors and accelerometers, as well as a rigid gripper. The

robots also have communication devices in the form of coloured LEDs and sound emitters

[16]. In contrast to other swarm robots, s-bots are able to physically link themselves

together (using their grippers), allowing novel behaviour such as crossing over crevices.

3.3.3 UCT Swarm Robots

The University of Cape Town has developed a number of small, inexpensive swarm robots,

shown in Figure 3.8 on the following page. Each robot has six infrared proximity sensors,

as shown in Figure 3.9. They also feature light sensors and infrared line sensors, the

latter allowing them to recognise lines on the ground. This can be used to force the

robots to move in a pre-defined, delineated area. The robots are equipped with two

wheels on either side which provide differential locomotion. The motors are powered by

a lithium-ion battery which has a life of approximately 150 minutes [18].

Their simple construction and low cost make them an attractive option in comparison to

other swarm robots. In addition, the fact that they are available for use at UCT led to

the decision to use them as the basis for the simulated robots in this project.
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Figure 3.8: Swarm robots developed by the UCT Robotics and Agents Research Lab.
Reproduced from [18].

Figure 3.9: Circuit board of a UCT swarm robot, showing the location and field of vision
of its infrared sensors. Modified from [18].
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Chapter 4

Physical Simulator

In many technical disciplines, computer simulation is an invaluable tool that allows ana-

lysts to simulate real-world systems by the creation of an abstract computer model. This

chapter will focus on the simulator that was developed during this project for analysis of

multiple-agent robotic interactions. The benefits of performing computer simulations are

first discussed, followed by a survey of the existing simulators suitable for this task. The

abstract physical model used by the simulator is described and its fidelity evaluated. The

focus then shifts to the programmatic details of the actual simulator that was developed,

as well as an explanation of its overall operation.

Calculations and programmatic details relating to the physical model that were thought

too technical for the main report may be found in Appendix A on page 126.

4.1 Rationale for Simulation

Computer simulation is a powerful tool for predicting and studying system behaviour

which is too complex to model using a purely analytical approach. While this statement

is true in general, robotic simulations in particular confer a number of unique advantages

over real-life robot testing. In order to ensure that the simulator to be designed would

allow the user to realize the benefits of simulation, while attempting to avoid some of

the common pitfalls, an evaluation of the merits of robotic simulation was undertaken.

These advantages are presented first below, followed by some known caveats.

Robustness of simulated robots.

Damage can result if real-life robots are programmed with faulty control strategies

that result in high-speed collisions with obstacles and other robots, or sustained

strong motor currents when trying to push into a wall [1]. Simulation allows such
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behaviours to be anticipated before transferring these control strategies to actual

robots. This ability is particularly advantageous when modelling robot learning

strategies, such as the one presented in Chapter 8, where robots regularly collide

with obstacles while learning how to avoid them.

Infinite energy supply.

While simulated robots can certainly be modelled so that they have a finite en-

ergy supply (if such a degree of realism is desired), it is often the case that the

control strategies are of greater interest than the longevity of the robot’s batteries.

Simulations can therefore detect emergent behaviours which only manifest after a

period of time greater than the robot’s battery life. Such behaviours would not be

witnessed in real-life testing.

Ease of analysis.

A posteriori analysis of physical robot behaviours can be problematic if the data

required for analysis was not captured by the robot’s controller during testing. Data

typically not captured could include global coordinate positions, orientations and

data not detectable by an individual robot’s sensors (e.g. if a collision occurs in a

sensor ‘blind spot’). The advantage of simulation here is clear: since all physical

data is stored in the simulator, such data can easily be accessed and post-processed,

providing insight into the robot’s behaviour during the simulation. This can be

particularly useful for very long simulations where it is infeasible to directly observe

robot-world interactions; in such cases various data handling techniques (such as

graphing selected variables) can be utilized.

Speed of simulation.

In many cases, simulation trials can be performed faster than real-time [19], thus

allowing the data sets referred to in the previous paragraph to be generated much

faster than if testing were performed on actual robots. However, it is not always

the case that simulation proceeds faster than real-world testing [1], as the compu-

tational load of the simulation is a function of the complexity of the simulation’s

environment, and the robots’ interactions therewith.

Since the computation of the physics engine and robotic controllers is borne as

a monolithic burden by the simulator, the speed of the simulation will depend

strongly on the fidelity of the physics engine, as well as on the number of simulated

agents and their computational complexity. For example, if robots are equipped

with vision sensors (as opposed to much simpler IR sensors), computational load

per agent increases dramatically. However, even if the speed of simulation on a

single processor core is lower than real-time, simulation still provides the unique

advantage of being able to parallelize the computation across multiple processor
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threads (in certain cases), multiple cores and multiple workstations. Simulator

performance is further discussed in Section 4.8 on page 45.

Low cost.

The financial costs of simulating robotic behaviour computationally are trivially

small in comparison to building, maintaining and testing a corresponding collection

of physical robots [1]; this is particularly true if such robots are to be used for

advanced applications, such as marine robots [20] or military robots [21]. It is

noted, however, that particularly intensive simulations may require the purchase of

computing time on high-powered clusters.

In spite of the above advantages, there also a number of problems associated with at-

tempting to simulate real-world robot behaviour.

Noisy data.

Robot sensors rarely deliver fully accurate signals, but rather an approximation

of what they are measuring [22]. Similarly, actuators and motors often do not

perform as expected for a variety of unpredictable reasons [23]. Simulated sensors

and motors do not, by default, have such inaccuracies. While superficially this

may appear to be an advantage as robot behaviour can be evaluated in simulation

without the need to consider data noise, it can in fact be a severe problem as

such noise affects robot behaviour profoundly [1]. Indeed, when simulating agent

learning algorithms, the drop in performance when moving from the simulated to

the real environments is markedly less for simulations that include noise [24, 25].

An obvious method of overcoming this problem is to add appropriately-bounded

random noise to the signals returned by sensors, and also to the effects of motors.

Random noise within a certain range can be added at each timestep or the same

random noise added for some finite number of timesteps [24]. However, appropriate

selection of the amount of noise added is important if the simulation is to be of

practical value. For example, in evolutionary learning simulations, it has been

found that where too much noise was present in the simulation, the performance of

the evolved controllers in a real-world test was substantially lower [25].

Inaccurate representations.

The particular assumptions that are made in the abstracted physical model can have

a profound effect on the behaviour of simulated robotic agents [1]. modelling certain

physical phenomena, such as sonar or the low-velocity motion of wheeled vehicles,

can be difficult for physics engines [22]. Additionally, a danger of simulation is

that programmers and simulated robots alike will attempt to solve problems that

are merely artifacts of the physical model used, and would not appear in the real
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world [23]. A corollary is that control algorithms that work well in a simulated

environment will perform worse, or not at all, in a real-world environment [23].

Determination of physical constants.

Closely related to the previous point of how physical phenomena are modelled, is

the issue of “how much” they should be modelled or more precisely, how to deter-

mine the constants that are used in the physical model. For example, in a robotic

simulation that features gravity, how the value of the gravitational constant should

be chosen is non-trivial. In general, the time taken resolving physical relationships

into a set of simulation constants is a drawback of simulation [22]. Whether these

constants accurately reflect reality is a separate question.

It is often possible to preserve dimensionless numbers if, for example, length and

time in the simulation are linearly mapped to length and time in the real world.

Then it would be possible to suitably determine the gravitational constant by di-

mensional analysis. For more complicated physical phenomena (such as the fire-

fighting task described in Chapter 9), however, it is not always possible to use

dimensional analysis and some degree of modelling (with appropriate assumptions)

may be necessary.

The characteristics of simulations listed above influenced the design choices that were

made, in a number of ways. To allow easy analysis of data and improve the speed of

simulation, the visualisation and core simulation functions were segregated, as is further

described in Section 4.6. The ability to add custom code to input files that will store sim-

ulation data and output it into other formats (such as SciLab matrix files) for subsequent

analysis, was added. One of the reasons for choosing Python as the design language was

the ease with which multicore processing can be attained by use of the Parallel Python

module (other reasons are discussed in Section 4.5.2). Finally, the ability to add ran-

dom noise to sensor inputs, as well as random fluctuations to motor behaviours, was

implemented and is described further in Section 4.3.2.2.

4.2 Survey of Existing Simulators

In order to design a robotic simulator capable of simulating swarm behaviour, a survey

of existing robotic simulators was performed. This was done chiefly to determine existing

best practices in robotic simulators, as well as to identify traits that could make such

simulators unsuitable for modelling swarm behaviour, in particular.

This section serves two purposes: to provide the reader with an account of the exist-

ing software for robotic agent simulation, as well as to present those simulators whose
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Figure 4.1: A typical Player/Stage simulation, showing a number of variously-coloured
robotic agents traversing a 2D map. Reproduced from [26].

properties most influenced the design process of the simulator created in this project.

4.2.1 Player Project

The Player Project is a collection of computer programs used for simulation of robotic

behaviour [19]. It consists of three components: the Player server, the Stage 2D simula-

tion environment and the Gazebo 3D simulation environment, available in a number of

programming languages. The general mode of operation is to use the Player server to

provide client software with an interface to robot controls and sensors, while using either

Stage or Gazebo as a simulated robotic environment into which artificial robots can be

deployed, as shown in Figure 4.2.1. Player can also be used in non-simulated environ-

ments: it provides application programming interfaces (APIs) which client software can

use to communicate with real-world robots while actually deployed. This is possible if

the robot supports the Player protocol (as do most of those mentioned in Section 3.3).

It thus has the significant advantage of code transferability; that is, code written for a

simulated environment can be transferred to a real-world environment with little or no

modifications [19].

The Player server operates by abstracting generalized robot behaviour into a set of pre-

defined interfaces such as power, position2d, ir and others. Thus, the Player server

provides client software with common and standardized methods to interact with robots’

sensors and other devices (usually actuators and motors) through an abstract interface.

The Player server also interacts either with a physical robot or the Stage/Gazebo environ-

ments which perform the actual simulation. These environments have their own physics

engines that perform, inter alia, rigid body dynamics and collision detection. Although
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Figure 4.2: Functional relationships in the Player/Stage environment. Adapted from [27].

simulations can be performed with Stage alone [19], the combination of Player and Stage

is most commonly used and the combination is often known simply as “Player/Stage”.

The functional relationships between the client software, Player server and Stage envi-

ronment are shown diagrammatically in Figure 4.2 (‘Code’ in the figure refers to client

software).

Typically, the client software referred to above would be the robot’s control software

which sends commands to actuators and motors based on sensor input. Thus, the client

software has no way of knowing if the agent with which it is interacting is actually

physical or simulated. In terms of computational efficiency, the physics engine of Stage

has, as the authors describe it, “good enough fidelity”, with the stated goal being to use

computationally cheap models in order to simulate a large range of devices [19, page 3].

The connection between the client software and the Player server, and between the Player

server and Stage environment, is made over the TCP/IP protocol, even if the client

software, Player server Stage environment all reside on the same computer. A potential

consequence of this is feedback lag: commands issued by, and data sent to, the client

software may experience much higher latency than if all these components were in a

single process. Aside from this potential problem, the Player/Stage platform is a highly

modular and feature-rich robotic simulation environment, well-suited to modelling of

swarm behaviour.

Chapter 4: Physical Simulator 26



University of Cape Town Department of Mechanical Engineering

Figure 4.3: Trace of robot movement from a Simbad simulation. Reproduced from [28].

4.2.2 Simbad

Simbad is a three-dimensional robotic simulator written in the Java programming lan-

guage [28]. It has been designed for research into autonomous agent behaviour, and is

specifically oriented towards artificial intelligence and machine learning [28]. In many

respects it is very similar in appearance and operation to Player/Stage, with the key

difference being that it comes with a number of AI features included, such as neural

networks, reinforcement learning algorithms and evolutionary algorithms. A trace of a

robot that has been instructed to ‘wander’ in a Simbad simulation is shown in Figure 4.3.

4.2.3 Boids

Boids is generally regarded as the first simulator of autonomous mobile agents. In particu-

lar, it was designed to simulate the flocking behaviours of birds (in three dimensions) [29].

While not a robotic agent simulator, it is included here because it demonstrates the emer-

gence of complex behaviour from agents following simple rules. Specifically, each boid is

given the follow rules to follow [29]:

1. Steer to avoid being too close to local flockmates.

2. Steer to match the average direction of local flockmates’ movement.

3. Steer toward the centroid of local flockmates.
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Figure 4.4: Screen capture from Boids showing a number of autonomous agents exhibiting
flocking behaviour. Reproduced from [29].

These rules are followed by each agent, and the emergent behaviour is flocking, as shown

in Figure 4.4. These simple rules influenced the behaviour-based simulations that were

implemented in this project and will be presented in Chapter 5.

4.2.4 Webots

Webots is a development environment used for the programming and simulation of mobile

robots [30]. As a development environment and simulator combined, it provides tools that

assist with the development and execution of simulation code, shown in Figure 4.5. The

simulator aspect provides a high fidelity three-dimensional environment within which

multiple agents can interact. While such a high fidelity environment is certainly useful

for advanced applications (such as robots that play soccer, as shown in Figure 4.5), it

was decided that such an accurate physical representation was unnecessary for the goals

of this project.

4.2.5 Critical Evaluation of Existing Simulators

Much information was gained from studying existing simulators. The model used by

Player/Stage, where simplified agents move around a map, was a considerable influence

on the initial design concepts. However, while the ability of Player to provide a common

interface that can be used for either real robots or the Stage simulation software is useful

for practical robot design, it was felt to be unnecessarily complex for this project. This

was because the explicit goals of the project were to simulate robotic swarm behaviour,

and not to directly transfer such behaviour into real robots.

Simbad was also influential on the early design and, together with Player/Stage, resulted

in the adoption of a two-dimensional model consisting of flat map entities. Boids served as
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Figure 4.5: The Webots development environment for the programming and simulation
of mobile robots, using a high fidelity 3D physics engine. Reproduced from [31].

a useful introduction to the topic of emergent behaviour, and the rules used in the Boids

simulation influenced the choice of rules for the simulations in Chapter 5. Finally, Webots

did not influence the design of the simulator directly, but did assist in differentiating the

requirements of different simulators and deciding what was unnecessary for the project.

For example, the integrated development environment provided by Webots, as well as the

high-fidelity physics model, were useful to observe for the sole reason that they illustrated

the complexity associated therewith.

Overall, the research on existing simulators helped inform the decision to use a two-

dimensional map environment, with a relatively low-fidelity physics model. Based on the

results of simulations performed using other simulators, it was seen that notable behaviour

can still emerge, even without a rich physics engine. Indeed, as noted by the creators

of Player/Stage, “low fidelity simulation can actually be an advantage when designing

robot controllers that must run on real robots, as it encourages the use of robust control

techniques” [19, page 3].

4.3 Physical Model and Physics Engine

This section details the decisions, assumptions and simplifications made in the develop-

ment of a physical world model for the simulator, as well as the corresponding physics

engine. The method of modelling the environment will first be presented, followed by

the model of individual robotic agents and their components. Finally, the broad design
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of the physics engine will be explained. Detailed calculations for the physics engine are

given in Appendix A.

4.3.1 Simulation Environment

As mentioned already, the decision was taken to create the simulated environment in 2D.

This was done to reduce time spent on developing complex physical models, such models

being unnecessarily complicated for the simple swarm behaviours that this project seeks

to capture.

The core of the simulation environment is a 2D map. A map defines the limits of the

simulated world, and includes all elements of the world that are not robotic agents. These

elements are generally obstacles, which can be thought of as solids objects impenetrable

by agents, but can include any environmental artifacts that a designer should wish to

model. For example, for the fire-fighting task detailed in Chapter 9, it was necessary to

create a new type of map object, namely a ‘fire’. Map entities can be given arbitrary

properties (such as ‘temperature’ for fires), and can also be excluded from the contact

model, meaning that agents cannot collide with these entities. The latter may be useful

for entities such as ground markings.

Before proceeding, a brief note on the world-related nomenclature used in this report may

be helpful. The term ‘object’ is used to refer to any element in the simulation, including

agents, obstacles and any other simulation entities, such as fires, ground markings, etc.

The term ‘world’, by contrast with ‘map’, is used in this report to refer to all objects in

the simulation, be they obstacles, agents or other special types of objects, such as fires.

In the broadest sense, the simulator operates by discretising the flow of time into a number

of ‘simulation time steps’. At each time step, a world loop is performed, which consists

of three main events:

1. Every object in the world is refreshed ; this can have a number of consequences,

depending on the object.

2. The physical contact model is enforced, to ensure that the object refreshing that

took place in the previous step did not violate the simulator’s physical model (and

correct this, if it occurred).

3. Once compliance with the physical model has been ensured, the state of the world

(i.e. all objects’ coordinates and properties) are made available to the rest of the

simulation.
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What also generally follows from the last step in the world loop is an updating of the

graphical view of the simulated environment, but this is not strictly necessary. The state

of the world could be written to disk, or passed to some other software for analysis.

The first step of the world loop, a refresh of all objects in the world, is performed so that

all objects may update their properties at the new time step. For agents, this equates

to changing map positions and orientations to match their velocities. When an agent is

refreshed, it, in turn, sends a refresh instruction to its sensors, which provide the agent

with updated sensory data. While objects such as obstacles are generally static, they

are still provided with the ability to refresh should they be made dynamic in the future

(for example, if moving obstacles were to be implemented). Other world objects are

also required to have an ability to refresh (specifically, a refresh() method), which can

perform any function desired of the object, even if this function is simply to do nothing.

The second event in the world loop ensures compliance with the physical model. For

example, if, in the previous step, an agent has moved into an obstacle and actually

crossed the boundary of the obstacle, this collision will be detected and appropriate steps

taken to ensure that the agent no longer occupies the same space as the obstacle. The

physical compliance step is purposefully performed after the refresh step, to ensure that

the final state of the world is physically-compliant when it is released to the rest of the

simulation at the end of the world loop.

A selection of maps, provided with the simulator package, are shown in Appendix D.2.

4.3.2 Agent Representation

While a number of robotic hardware configurations are available for swarm robotics, the

model developed and used for all the simulations in this project was purposefully based

on the existing swarm robots at UCT (shown in Figure 3.8 on page 20).

Essentially, these robots have two wheels mounted on either side, and a number of infrared

(IR) sensors placed at intervals around the periphery of the agent, as shown in Figure 3.9

on page 20. The robot uses differential wheel locomotion: it turns and moves forward and

backwards by controlling the speed of each wheel individually. It also has a line sensor

(to detect lines on the floor) and a bump sensor, which detects a collision with another

object.

The model of this swarm robot that was created for the simulation is shown in Figure 4.6

on the following page (a). The robot is modelled as circular in shape, for the sake of

simplicity. It has two wheels on either side, and uses them in the same manner as the

real robot (these wheels are not shown in simulations). Since the orientation of the real
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Figure 4.6: Pictorial representations of various simulated agent designs.

robot can change as it moves, the simulated robot is drawn with two differently-coloured

halves, so that its orientation is perceptible.

To provide modularity and make the simulated robot easily configurable, a robot su-

perclass (named AgentCir) was created. It is capable of providing simulated robots of

any size, with a circular shape and two laterally-fixed wheels that function differentially.

In order to obtain an actual simulated robot, a sensor configuration is required. This

configuration is specified in a subclass, such as Agent3 for the robot shown in (b) in the

figure, or Agent9 for the robot shown in (c). Sensors need not be limited to infrared,

the fire-fighting agent shown in (d) is equipped with a radiation sensor, able to sense fire

temperatures (this agent is in the AgentFire class).

The extensible nature in which the simulator has been written permits the user to easily

create new sensory configurations using the AgentCir class. With a bit more work, it is

possible to create completely novel robot designs that can integrate with the simulator.

Such designs may include rectangular robots that feature wheel sets aligned at 90◦ to

each other, or robots that use a single spherical rubber ball to instantly move in any

direction (similar to the ball in a computer mouse). In these cases, users are required to

do two things:

1. If the overall shape of the robot is not circular, the contact model needs to be

updated to check for collisions between the new shape, and the existing shapes.

For example, if a rectangular robot shape is created, the contact model needs to

check for collisions between rectangles and circles (as it already does), but also for

the new possibility of contact between rectangles and rectangles.

2. Each robot class is required to have a refresh() method, which is responsible

for updating the robot’s position and orientation (locomotion), and querying the
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Figure 4.7: Schematic showing how robots distinguish sensed obstacles from agents.
Drawn using information from [32].

sensors. Therefore, if a novel locomotion method (such as the spherical rubber ball)

is to be used, the robot class needs to provide a method for this locomotion to be

simulated by updating the robot’s positions and orientations accordingly.

New robot designs can still use the existing sensor objects, such as IR sensors or radiation

sensors. Additionally, it is possible for the user to write their own sensor classes that

have totally different functionality, such as sonar. Existing sensors can also be modified

to simulate the properties of other sensors. For example, it would be possible to simulate

a laser sensor by simply using the existing IR sensor with a very narrow angular range,

and perhaps an increased depth of vision. Bump sensors could be simulated by using IR

sensors that have a very shallow depth.

4.3.2.1 Sensor Representation

The primary sensors used on the simulated agents in this project were IR proximity

sensors. Each sensor has a depth of field, and angular range, as shown in Figure 4.6.

When a sensor’s sense() method is called by its parent agent, the sensor returns the

value to the nearest object within its field of vision.

Sensors were also given the ability to distinguish agents from other obstacles. In the

real world, this can be achieved by observing the difference between the emitted and
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received IR signals, as shown in Figure 4.7 on the previous page [32]. Agents are able to

distinguish obstacles from other agents by examining the incoming infrared signal and

comparing the signal to the one emitted. The cited work employs IDs unique to each

agent, but this is not necessary. In order for an agent to distinguish another agent from

an obstacle, it is required that the second agent’s emitting diode be in the field of vision

of the first agent’s sensor. However, in the simulation, the simplification was made that

a sensor can intrinsically differentiate between agents and obstacles without the need to

detect emitter diodes directly.

Because simulated sensors only return to the controller a single scalar value indicating

the distance to the nearest detectable object, there is an inherent error in using such

information to reconstruct the position of the object. IR sensors have a non-zero angular

range, therefore detected objects could lie anywhere within this angular field of vision.

The agent has no means of directly determining where in this angular range a particular

object lies. The result is that the best calculation of object position the agent can make is

by assuming the object lies within the middle of the sensor angular range. This introduces

potential error into the reconstructed position of the object.

Another important simplification that was made in representation of sensors is that their

refresh rates were assumed to be the same as the ‘refresh rate’ of the discretised simulation

(or more correctly, sensor period was taken to be the same as the size of the simulation

time step). This could potentially overstate (in the simulation) the ability of an agent

to react swiftly to changing sensory input. If desired, the sensor class could certainly be

modified to only provide data at pre-determined intervals (e.g. every n time steps).

The mathematics of sensor operation is covered in Appendix A.3.

4.3.2.2 Random Noise

In Section 4.1 it was described how the lack of random noise in simulations can make

such simulations at best, inaccurate, and at worst, invalid. The presence of noise in

sensory data, as well as unpredictable motor characteristics, have a significant effect on

real robot behaviour. Therefore, if a simulation is to remain relevant and present a

faithful representation of physical reality, the simulation should include random noise.

The ability to simulate random noise has been designed into the simulator in two ways:

sensory noise and unpredictable motor behaviour. The former is a property of each

individual sensor object, with the latter being an agent property.

Error on sensor readings is implemented by means of two variables, which are attributes of

each sensor: the probability of sensor error occurring (sep) and the fractional magnitude

of the corresponding error (sem). Briefly, at each time step, sensors calculate their values
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as described in the previous section, but with probability sep they will add or subtract

a fraction sem of the true reading to the reading returned to the agent.

Error on wheel behaviour is implemented by means of wheel slip. Similar to the case with

sensors, this is defined by the probability of wheel slip occurring (wsp) and the fractional

magnitude of the corresponding error (wsm). Note that each wheel is treated separately,

so it is possible that one wheel may slip, and not the other, leading to unintended turning.

4.3.2.3 Other Issues

The simplified agent model necessarily lacks some properties of real robots. For example,

real robots use batteries for powering motors, controllers and sensors, and therefore the

length of a particular robot excursion is limited by the life of the on-board batteries.

Additionally, robot components (such as motors and controllers) can occasionally suffer

from malfunctions or complete breakdown, such as wear on motor brushes. While these

and other real-world phenomena can certainly be included in the simulator, they were

deemed outside the scope of the project and therefore not implemented.

4.3.3 Contact Model

At each simulation time step, after all objects have been refreshed, a contact function is

invoked, which detects contact between objects and, in the case of a collision, performs the

appropriate actions. The general algorithm is to consider every possible pair of objects

in the world at each time step and mathematically check if they have made contact.

This algorithm can be considered naive, in that it considers contact between objects that

are potentially far apart. The effect of this on the performance of the simulator will be

analysed in Section 4.8 on page 45, with the conclusion that it is relatively inefficient.

Despite this inefficiency, the simulator performance was generally found to be acceptable

for the simulations performed during this project, mainly because of the ability to separate

core simulation and visualisation (detailed in Section 4.7 on page 42).

When a moving object collides with another object (moving or stationary), the collision

function is invoked to handle the collision and ensure that no areas overlap. In initial

versions of the simulator, a collision model employing conservation of momentum and

coefficients of restitution was used. This was found to be inaccurate because it did not

account for the friction between the ground and an agent’s wheels (which prevents lateral

motion of the agent). It was decided that to incorporate such friction into a high-fidelity

physics model would be unnecessarily complex, so a simplified model was adopted instead.
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Figure 4.8: Several cases of a circular agent colliding with a rectangular object.

Essentially the model considers two types of collisions: those between rectangular and cir-

cular objects, and collisions between two circular objects. General cases of such collisions

are shown in Figures 4.8 and 4.9 on the next page, respectively.

Essentially, when a circular agent collides with a rectangular object, one of three things

can happen, depending on the angle of contact. If the angle of contact is shallow enough,

the force of the object on the agent causes the agent to rotate so that its motion continues

parallel to the object. If the angle of contact is more direct, the agent will not be rotated

by the object, but will instead attempt to move into the object. If this is done at any

angle other than 90◦, the agent will slide along the object, as shown in the middle frame.

In the case of a collision at 90◦, the agent will come to a halt, but if it continues to rotate

its wheels, the wheels will slip.

For circular agents colliding with circular objects, the agent is never rotated by the object.

Instead, the agent will slide along the object surface, maintaining its initial orientation,

as shown in Figure 4.9. If the agent were to collide with the circular surface at precisely

90◦ (not shown), the agent would halt in a similar fashion to the last frame of 4.8. Note

that the foregoing collision rules apply equally to agent-on-agent collisions, with the only

difference being that both agents experience equal sliding and displacement.

The effects of wheel slip were also included in the physical model. Thus, if an agent

Chapter 4: Physical Simulator 36



University of Cape Town Department of Mechanical Engineering

motion

sliding

start

Figure 4.9: Case of a circular agent colliding with a circular object, resulting in sliding.

attempts to move into another object, the collision model will not stop the agent’s wheels

from turning, but rather cause the wheels to slip. The effect of this is that the agent

does not move according to the rate at which its motors and wheels are rotating, but

rather according to the amount of contact they make with the ground. An important

consequence of this fact is that an agent has no direct way of knowing if it is actually

moving relative to the ground or if its wheels are slipping, as is consistent with real robots.

The mathematics of the contact and collision models are given in Appendix A.2.

4.4 Inter-agent Communication

A number of different robot communication methods have been proposed and imple-

mented. Balch and Arkin [33] classify these methods into three functional groups, in

increasing order of information entropy.

No explicit communication.

Even if the absence of explicit communication between agents, it is still possible for

agents to communicate with each other, if they are able to distinguish between ob-

stacles and other agents [33]. For example, if an agent observes that a large number

of other agents have congregated in a certain location, this is a form of communica-

tion and the agent might infer from that information that it would be advantageous

for it to join the group. It has been shown that implicit communication is sufficient

to lead to cooperation in a variety of different robot tasks [6, 33].
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State communication.

State communication can be defined as the communication of an agent’s inter-

nal state, which could implicitly include information about environmental condi-

tions [33]. For example, if a robot is currently engaged in an activity (such as

extinguishing a fire), this could be regarded as its internal state and it could com-

municate this state to other agents. Agents receiving that communication would

be able to infer that the first agent must be near a particular resource (in this case,

fire), but do not explicitly know where the resource is.

Goal communication.

An agent can also communicate goal-oriented information to other agents. Suppose

that in the fire example previously mentioned an agent were to communicate the

location of a fire, as opposed to the fact that it is extinguishing a fire. This infor-

mation is much richer and, depending on the circumstances, could be more useful

to other agents than state communication.

The simulations in this project were based on decentralised actions with local information,

in the absence of communication and internal world representations. A brief semantic

discussion of these terms is appropriate in order to contrast this approach with other

possible methods of swarming. That agents’ actions are decentralised implies that each

agent is responsible for taking its own actions, which will be a function of its particular

control strategy and the extent of its knowledge about the environment (which could be

local or global knowledge). This decentralised approach is in contrast to the centralised

method of coordination where agents receive instructions from a central authority. In that

case, the central authority receives information about the environment, decides which

actions each agent should take in order for the desired group outcome to be achieved,

and communicates to each agent its specific instructions (e.g. “turn left, then travel

straight for 20 units and stop”).

The information used in the decision-making process, whether centralised or not, could

be obtained in a number of ways. Three such ways will be discussed here, and can be

described as local, shared local and global. If information is purely local, then each agent’s

sensory input is available only to that agent, necessarily implying decentralised coordi-

nation. Each agent’s local sensory information could also be shared, either with other

agents (in decentralised coordination) or with a central coordinator. Finally, information

could also be obtained globally, which would require a means of accumulating all infor-

mation available. This is generally only possible by means of some central entity, which

would likely also function as coordinator.

The decision was ultimately taken to implement agents without the ability for explicit

communication (thus implying decentralised decision-making using only local informa-
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tion). This was done for several reasons.

1. Being a swarm behaviour simulator, one of the goals of the project is to artificially

reproduce swarm patterns seen in nature. Many of the structures arising from such

behaviours do not require communication to occur (flocks of birds, school of fish,

herds of antelope, etc). However, in spite of this, many swarm behaviours do require

the use of some (limited) communication, such as cooperative transport in ants, or

the migration of bees.

2. Control systems that rely on communication are necessarily less robust than those

which do not require it.

3. The UCT swarm robots, on which the agents in this simulator were modelled, are

not equipped with any means of explicit communication.

In spite of the above, it would not be a difficult task to modify an agent class (either

the AgentCir superclass or any of its subclasses) to make provision for communication

emitters and receivers.

4.5 Implementation Details

4.5.1 Software Design Methodology

In order to ensure that the simulator would be well-designed and incorporate existing

best practices in the field of scientific software, research was undertaken to gain an un-

derstanding of the applicable principles of software design. These are briefly summarised

below.

Modularity.

Software should be highly modular; that is, be composed of a number of interacting

modules which can easily be added, changed or removed, without disrupting the

operation of the overall package [34]. Each module should perform the minimum

required of it and make relatively few assumptions about the context in which it

might be used. Modularization can be present at various levels of the software,

from algorithms to data structures [35].

Object-oriented programming.

Object-oriented programming (OOP) is a programming paradigm that emphasises

the use of programming objects : collections of data and functions which perform
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related tasks, grouped into classes. Instances of classes can be introduced to the

program, which instances inherit the attributes (data and functions) of the classes

whence they were created [36]. This principle of inheritance promotes modularity

of code, as superclasses can be designed to perform a minimum of tasks, with more

specific functions implemented by subclasses which inherit the functionality of their

parent classes.

Parametrisation.

Values that are liable to change over the life of the software should be programmed

explicitly as variables, or parametrised, rather than as constants [34]. For example,

in the collision avoidance algorithm introduced in Chapter 5, the minimum distance

between an agent and obstacle before the agent turns to avoid a collision is coded as

a variable, rather than as a fixed value. This again promotes software modularity

as another control algorithm wishing to use the collision avoidance algorithm, but

with a different minimum distance, can simply call the algorithm with a different

parameter.

Reuse of code.

In general, code to accomplish a specific task should only be written in one place,

and not repeated [36]. If the same functionality is required elsewhere, the code

should be objectified (as a function, class, or whatever else is appropriate).

Reuse of existing resources.

Similar to the idea of not “reinventing the wheel”, an attempt should be made

to reuse existing resources as far as possible. While it is often preferable to write

software from first principles. as the assumptions made in the process are known

explicitly to the programmer, it is frequently the case that exogenous resources

developed by specialists in the appropriate field are faster and more correct than

those developed by non-specialists [35].

Efficiency.

While it may appear to be a truism that software should be efficient, this is par-

ticularly important for scientific software (such as a simulator) where the volume

of computation is comparatively larger than in other disciplines and small losses in

efficiency can translate to large losses in time.

4.5.2 Choice of Programming Language

The Python programming language was chosen for writing the simulator software. Briefly

described below are a number of reasons for this choice.
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Object-oriented.

Python was designed as an object-oriented language, and its class structure sup-

ports advanced OOP applications such as polymorphism (see next paragraph) and

multiple inheritance, which allows classes to inherit attributes from more than one

parent class [36]. However, the decision if and when to use the OOP paradigm is

left to the programmer: Python also supports procedural programming, allowing

software to be developed in a flexible manner to fit the design requirements [36].

Readability.

Python’s syntax has been designed to be highly readable often using English words

such as ‘is’, ‘not’ and ‘in’ in place of less-readable constructs [36]. This approach

follows the notion that code is written (usually) once, but read multiple times.

Therefore, it is more important that code is easily read than easily written.

Abstraction.

Python is a relatively high-level (abstracted) language, meaning the software de-

signer is free to focus more on functional aspects of the code, and less on aspects

related to implementation. To this end, Python provides a large number of high-

level features, including automatic memory management (“garbage collection”),

dynamic typing (variables can change type) and myriad built-in object types and

tools, allowing common operations to be accomplished easily [36]. Such abstrac-

tion in a programming language is usually accompanied by poor performance, and

Python is not an exception. However, it is possible to mitigate these performance

losses by taking advantage of Python’s extensibility.

Extensibility.

Python is able to execute code that is written in other, lower-level languages,

such as C, thus realising the significant speed of such languages. Additionally,

many common tasks in Python are actually executed by pre-compiled C inside the

Python interpreter, thus running at “C speed”. For intensive computational work

(such as the simulations in this project), the NumPy and SciPy extensions allow

computationally-expensive mathematical operations (such as multiplying matrices)

to be executed at the speed of a C program, since these extensions are written

in C [36]. This extensibility allows programmers to realise the performance bene-

fits of lower-level languages while enjoying the power and convenience inherent to

higher-level languages.
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4.6 Simulator Architecture

The simulator is composed of a number of Python scripts, three of which are executable

by the user. A relational diagram of all scripts, including brief descriptions of their

functions, is shown in Figure 4.10 on the following page. The three executable scripts are

shown with a thick border.

The basic procedure for operation of the simulator is as follows. A user will create a

.job file in a text editor, normally by modifying the sample .job files provided with the

simulator package. The job file specifies the map, type and number of agents, as well as

the control functions used by agents. It can also include other task-specific scripts, e.g.

for Q-learning or fire-fighting tasks which will be presented in later chapters.

Once an appropriate job file has been created, the user runs the main simulation program,

sim.py. This program takes a job file as input, and either displays the simulation on-

screen in real-time, saves it to disk, or both. If the simulation is saved to disk, it is written

to a .sim file which can subsequently be played back using executable viewer.py. If the

user wishes to define custom scripts, this can be done using executable mapImporter.py,

which will convert a vector graphics image into the native .map format used by the

simulator.

4.7 Offline Visualisation

It became apparent at an early stage of the project that if computationally-intensive

simulations were to be carried out, the time taken to execute a world loop might become

large enough that the refresh rate of the simulation would be unacceptably low if viewed in

real time. This would result in jerky visualisations and make analysis of agent behaviour

exceedingly difficult and time-consuming.

The decision was therefore taken to separate the visualisation and core simulation com-

ponents of the simulator, similar in operation to other simulation software such as finite

element modellers. Thus, simulation is performed without the requirement that the user

be present during simulation, and with the output of the simulation being saved to disk

for subsequent viewing. A major advantage of writing to disk is that simulations in-

volving randomness (whether in agent decision-making or in physical phenomena such

as random noise) can be reproduced identically every time, which is important for study

and analysis of simulations.

All the parameters defining a particular simulation are contained in a job file, with file

extension .job. When the user wishes to run a simulation, he need only locate the appro-
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Figure 4.11: Dialog box showing progress of a simulation.

priate job file and execute it using the simulator (contained in sim.py). The simulator

will either show the simulation in real-time, save it to disk, or both. If the simulation is

saved to disk, the drawing commands that are normally sent from the simulation program

to the graphical user interface (GUI) at the end of each world loop are instead written

to disk (or simultaneously executed, if so desired) in a simulation file with file extension

.sim. To visualise a simulation that has previously been saved, the user runs the viewer

program (contained in viewer.py) and opens the appropriate simulation output file.

If a user runs a simulation and opts to save it to disk and not view it in real-time, a

progress indicator is displayed on-screen to give an estimate of when core simulation is

expected to finish, as shown in Figure 4.11. It includes a graphical progress bar, as well

as the expected time remaining (ETR) and the expected time of completion (ETC).

The drawing commands written to file are in their raw form, exactly as they would be

executed by Tkinter (Python’s GUI). Accordingly, they are relatively verbose and have

a low information entropy, which would result in extremely large output files if written

to disk in this form. To provide a sense of scale, a particular simulation, which took just

under 60 seconds to visualise, has 350 000 drawing instructions which would produce a

file 36 MB in size if the commands were written unaltered. This file size is excessive for

what is a relatively short simulation. To avoid such large files, Gzip compression is used

to reduce the file size. With compression, the same simulation uses under 6 MB, about

one-sixth of the original size.

The rationale for writing the drawing commands in raw form, as opposed to developing

a special encoding, is portability. The drawing commands used to draw on the Tkinter

GUI are almost identical to those found in other languages, which have their own im-
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plementations of Tk (the general GUI of which Tkinter is the Python implementation).

Therefore, simulation files written with raw drawing instructions can be executed, with

only minor modification, in any programming language that has a Tk -based GUI.

It was found during testing of the viewer program that certain simulations with a low

number of drawing instructions per world loop (usually corresponding to there being few

agents) would play back exceptionally fast, making analysis of the simulation difficult.

Therefore, an extra function was added to the viewer program allowing it to self-regulate

the playback speed. This is an option that can be turned on and off by changing variable

speedReg from True to False. When enabled, if the viewer detects that playback is

occurring too fast, it will automatically decrease the frame rate to 30 frames per second,

which was found empirically to be an acceptable playback speed. Speed regulation is

dependent purely on playback speed and will not be affected by the speed of the user’s

platform.

It should be noted that the viewer is only able to down-regulate the frame rate, not

increase it. This is because playback normally occurs at the fastest speed possible. If the

user should find that the playback speed is unacceptably slow in the absence of speed

regulation setting the drawSensors option to False in the job file and re-executing the

simulation, speeds up playback dramatically. In addition to automatic speed regulation,

the viewer is able to slow down playback to a user-determined speed, which can be set in

variable delay in viewer.py.

4.8 Performance of Simulator

This section will provide a qualitative and quantitative analysis of the computational

performance of the simulator. Different aspects of the simulator’s performance will be

evaluated, namely the efficiency of the contact model, the scalability of the program, as

well as the effects of different maps and agent configurations on performance.

While there are a number of conceivable metrics that can be used to evaluate the perfor-

mance of a simulator, the analysis in this section will be based on the time required to

complete one world loop. A world loop refers to the set of instructions that are executed

each time the discretised world model updates. It generally consists of two broad types of

computation: physics-based and agent-based. The physics-based computations refer to

all calculations and steps performed by the physics engine, and generally include collision

avoidance and rigid body kinematics. Agent-based computations refer to calculations

and steps performed by each agent, and would generally consist of sensor calculations, as

well as calculations within the control algorithm.
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While the foregoing classification is generally useful, it should not be understood in a

purely literal sense as some ostensibly agent-based calculations, such as a sensor detecting

objects in the environment, are related more to the physics of the simulator than to the

agent itself. That is to say, the computational cost of each sensor considering every other

object in the world to decide which lie within its field of vision would not be borne by the

controller of a robot during real-world operation, but rather by the environment itself. If

we define τ as the time taken for a single world loop, then it is possible to write

τ = f ∗(κ, n, s, c,M,X, P )

where

κ = cost of physics engine

n = number of agents in simulation

s = number of sensors per agent

c = cost of agent control algorithm

M = complexity of map

X = list of agents’ generalized coordinates

P = machine performance

and f ∗ is some function of its arguments. A few comments on these variables are in order.

Firstly, f ∗ is unique to a particular agent size and sensor range (i.e. these two factors

have not been considered as variables). κ refers to the computational cost of the physics

engine, which is not identical to the fidelity of the engine. It is entirely possible that a

poorly-implemented low-fidelity engine could have higher cost than a well-implemented

high-fidelity engine. The notation used above also implies that the number of sensors per

agent (s) is the same for every agent, but the simulator imposes no such restriction. This

assumption of equality has been made to simplify the subsequent performance evalua-

tions, where some variables are systematically altered (while keeping others constant) to

determine their effect on performance. While the speed of the simulation likely depends

only on the only the total number of sensors in the simulation, it would be somewhat

misleading to imply that the number of agents and the total number of sensors were

independent of each other.

What is meant by c is the computational cost of one loop of each agent’s control algorithm,

e.g. a simple instruction-based collision avoidance algorithm would have a much lower c

value than a controller that uses neural networks and Q-learning with interpolation. The

map complexity, M , refers both to the number of objects in the map, and also how they

are arranged. Thus two maps with the same number of objects may have vastly different
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M values if one map has all its objects closely packed in one corner, whereas the other

has a more even distribution. The latter of these two maps would be considered as having

a higher M value as its more distributed nature would mean each sensor has to perform

a greater number of sensor checks, since these checks are only performed on objects that

lie within a certain range of the sensor. Closely related to the complexity of the map

is X, which describes each agent’s position in some set of generalized coordinates (e.g.

Cartesian position coordinates and angular orientation). Since the position of each agent

determines which objects its sensors check, the agent position will have an effect on τ .

Finally, P is some measure of the performance of the platform on which the simulator is

running. This need not only be processor speed, but would also refer to available memory

and take into account other complex factors such as operating system swap management.

While some of these variables may not be easy to quantify (or even quantifiable in prin-

ciple), the values of these individual variables are not of particular interest. What is of

interest is the effect they have on τ . For example, if we wish to assess how the contact

model scales with respect to the number of agents, we can set s = 0 and make the control

function a null function, so that it does not consume computational time (thereby setting

c = 0). Then, performing the tests on different map configurations (thereby varying M),

on the same machine (constant P ) for the same physics engine (constant κ), we obtain

the computational time complexity of the contact model,

τc = f1(n,M) . (4.1)

The results of simulations for three different map configurations are shown in Figure 4.12

on the following page.

Instead of measuring the actual time elapsed for each world loop, which is strongly

dependent on available system resources, CPU cycle time was used. The measure of time

complexity shown in the figure has been indexed relative to the lowest data point, for

ease of comparison. The maps used for the simulations are described as ‘dense’, ‘sparse’

and ‘open’, corresponding to the number of obstacles they contain, and the arrangement

thereof (these maps are shown, respectively, in Figures D.1, D.2 and D.3). The trend

lines fitted to the data points are quadratic polynomials with coefficients to give the best

least-squares-of-error fit, therefore indicating that the complexity of the contact model is

(no worse than) O(n2). This result is easily predicted. Since the contact model checks

each pair of world objects for contact, the number of checks is equal to nw(nw−1)
2

where

nw is the total number of objects in the world, equal to the sum of the number of agents

and the number of obstacles. Therefore, the number of contact checks is O(n2) and since

the time taken per check does not scale with n, the overall complexity of the algorithm

is O(n2). It is interesting to note that, even in the case of the dense map, the increase in
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Figure 4.12: Time complexity of the contact algorithm as a function of agent number,
for three different maps. Trend lines are least-squares quadratic polynomials.

the cost of the contact algorithm is less than proportional to agent number up to n = 42,

which is generally sufficient for most swarm simulations.

So far we have only considered the cost of the contact algorithm, which is only part of

the full world loop, the other part being agent-based calculations such as updating of

positions and sensing operations. However, sensing operations are strongly dependent

on the agent’s position on the map, due to ‘pruning’ checks that avoid computationally-

intensive sensing calculations if sensors are not near particular obstacles. Despite this,

it is possible to eliminate (or at least, minimise) the effects of X by allowing agents to

move around the map sufficiently long that they have visited most X values. It is then

possible to approximate τ by the mean value during the simulation, τ . If agents are given

a fixed number of sensors (s), for a fixed control strategy (c), it is possible to write the

total world loop complexity as

τ ≈ τ = f2(n,M) . (4.2)

Simulations were performed for the same three map configurations mentioned earlier,

with a sensor configuration of three forward-facing sensors, using the collision avoidance

rule presented in Section 5.2.2 on page 56, and for 3000 time steps. The computational
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Figure 4.13: Time complexity of the total world loop as a function of agent number, for
three different maps. Trend lines are least-squares quadratic polynomials.

cost of the entire world loop for these simulations is shown in Figure 4.13.

Again, the trend lines used are quadratic polynomials, which give an acceptable fit. It

is expected that the total world loop cost would be O(n2), since the contact model has

already been shown to be O(n2) and we can expect that the sensor-based calculations

scale with n2, since each agent’s sensors check all other objects in the world. A notable

result on the graph is that the complexity for the total world loop (y-axis) is significantly

larger than for the contact function alone. In order to gain a better understanding of

the fraction of the world loop computation spent on the contact function, the cost of the

contact function and total world loop for ‘Map 1’ are shown together on Figure 4.14 on

the next page. Note that the raw CPU time values for the contact function and total

world loop were obtained and then normalised relative to each other, in order to make

the values comparable.

It is clear from this graph that the complexity of the contact function as a proportion

of the world loop’s complexity decreases with increasing agent number. This can be

explained by the fact that, as each additional agent is added, there is an additional

object in the world for every other agent to sense, but there are also s additional sensors,

which add to the cost of the world loop.
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Figure 4.14: Time complexity of contact function and total world loop as a function of
agent number. Trend lines are least-squares quadratic polynomials.

Tests similar to the ones above can be executed to understand the effect on the simulator’s

performance of varying the number of sensors per agent. If simulations of varying s value

are performed using identical maps and agent control strategies (constant M, c), and

running each simulation for a large number of world loops, then

τ ≈ τ = f3(n, s)

A number of simulations were carried out for varying values of (n, s). This performance

test is particularly intensive, and in order to reduce computational time only s ∈ {3, 6, 9}
was considered. In order to eliminate the influence of X, each (n, s) pair was simulated

for 3000 world loops, as before. ‘Map 1’ was used. The results of the test are presented

graphically in Figure 4.15 on the following page.

As might be expected, increasing the number of sensors per agent increases the compu-

tational cost, and the complexity remains O(n2) irrespective of the number of agents.

It seems reasonable to expect that, for a given number of agents on the map (constant

n), the world loop complexity would increase near-linearly with s. This is because, as

shown in Figure 4.14, the complexity of the contact function (which is independent of s),

contributes a relatively small fraction of the total world loop cost. In order to verify this
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Figure 4.15: Time complexity of the world loop as a function of agent number and sensor
configuration. Trend lines are least-squares quadratic polynomials.

hypothesis, Figure 4.16 on the following page shows the same data as Figure 4.15, but

indexed by the time complexity for the 3-sensor configuration (the line for the 3-sensor

configuration is included to clarify how the data is obtained).

It is apparent that past a certain threshold number of agents (approximately n = 5),

increasing the number of sensors per agent while keeping the number of agents constant

has an almost linear effect on the complexity of the world loop. (That the relationship is

not completely linear can be explained by the inclusion of the contact function complexity,

which does not change at all with the number of sensors). Additionally, this linear

relationship between number of sensors and total cost is the same regardless of the number

of agents. It should be noted that these results pertain only to the particular control

algorithm and map used, but it is not unreasonable to expect that a similar relationship

would hold for other cases. However, if each agent’s control algorithm were to become

computationally expensive (as is the case with learning strategies presented later in this

report), it should be expected that the world loop complexity will begin to show a more

linear relationship with n. This is because the time complexity of the control algorithm

(which clearly is proportional to n) would be so large as to make the cost of the contact

and sensor algorithms unnoticeably small.

The consequence and utility of the above analysis is as follows: all else held constant, the
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Figure 4.16: Time complexity of the world loop as a function of agent number and sensor
configuration, relative to the time taken for the 3-sensor configuration.

complexity of the simulator increases linearly with the number of sensors per agent, and

quadratically with the number of agents. It was also demonstrated that the geometric

properties of the map can have a significant on the time complexity of the simulator’s

world loop. While the effect of varying the number of sensors per agent may not be of

practical concern, the scalability of the simulator with respect to the number of agents

certainly is, given that the purpose of the simulator is to model large swarms. The

complexity of O(n2) is largely due to the expense of the naive algorithm that has been

implemented for contact detection and sensor operation, which considers contact between

two objects even if they are far apart. Highly optimised approaches exist that are sig-

nificantly cheaper from a computational perspective, such as spatial partitioning, which

involves fragmenting the map space up into separate regions and only considering contact

between objects within a particular region [37].

The contact detection algorithm that was implemented, while not optimal, was considered

acceptable for use in this project, primarily because of the simulator’s ability to separate

core simulation and visualisation. Had this feature not been implemented, it would likely

have been necessary to pursue a computationally cheaper contact detection approach, at

the expense of time that was spent on the work that follows.

The job files for the performance tests shown in this section may be found in the package
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directory.

4.9 Map Creation

The map format that was created for use by the simulator allows creation of rectangular

and circular map elements by specifying their size and position. A typical map specifica-

tion is shown in Listing 4.1 (this particular specification corresponds to the map shown

in Figure D.1 on page 149).

Listing 4.1: Map data format used by the simulator.

map = [ Obstac le ( ” r ec ” , [ [ 0 , 0 ] , [ 2 0 , 6 0 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 0 , 0 ] , [ 8 0 0 , 2 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 7 8 0 , 0 ] , [ 8 0 0 , 6 0 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 0 , 5 8 0 ] , [ 8 0 0 , 6 0 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 7 0 , 7 0 ] , [ 1 1 0 , 5 3 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 1 1 0 , 2 8 0 ] , [ 4 0 0 , 3 2 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 2 2 0 , 0 ] , [ 2 6 0 , 1 5 0 ] ] ) ,

Obstac le ( ” r ec ” , [ [ 4 8 0 , 0 ] , [ 5 2 0 , 5 0 0 ] ] ) ,

Obstac le ( ” c i r ” , [ [ 6 5 0 , 1 6 0 ] , 3 0 ] ) ,

Obstac le ( ” c i r ” , [ [ 6 5 0 , 3 6 0 ] , 3 0 ] ) ,

Obstac le ( ” c i r ” , [ [ 3 0 0 , 450 ] , 5 0 ] ) ]

Rectangular elements are specified by the coordinates of their upper-left and lower-right

vertices; circular elements by their centre and radius. While this format is simple by

design, it is still laborious to construct a map in this way. To expedite the process of

map creation, an additional program was written for the simulator package that allows

importation of a Scalable Vector Graphics (SVG) image into the native map format. This

program is in the file mapImporter.py in the main package directory.

The SVG image format is compatible with the eXtensible Markup Language (XML) [38].

This means that SVG file contents are encoded in plain text, rather than binary. The map

importer program works by performing a regular expression string search-and-replace on

the SVG file, converting its contents to the native map format. In the current version,

it recognizes rectangular and circular graphics primitives, and converts them into the

corresponding map obstacles. It is also able to recognize ‘fire’ objects (introduced in

Chapter 9).

Chapter 4: Physical Simulator 53



University of Cape Town Department of Mechanical Engineering

Chapter 5

Behaviour-based Control

5.1 Introduction

The first type of control algorithms that were implemented using the simulator were those

where agent behaviour was pre-programmed. That is to say, agents were not given the

ability to learn from their environment, but were rather programmed to react to sen-

sory inputs in a systematic way. This approach is generally known as behaviour-based

control [1], referring to the fact that overall agent behaviour emerges from the internal

interaction between several pre-defined basic behaviours (such as avoiding collisions, find-

ing a specified target, exploring the map, and so forth) [39]. The actions produced by

each of these basic behaviours are a function of the environmental condition at any given

time.

In the broadest possible terms, each basic behaviour generates a potential action, which

is the action that would be taken by the agent if that basic behaviour were its only

behaviour [1]. Some coordination mechanism is then responsible for coordinating these

basic behaviours into a single overall behaviour for the agent. One possible way of

categorising such coordination mechanisms would be based on whether basic behaviours

compete for the overall agent behaviour, or whether they work in cooperation with each

other. These approaches are known as competitive and cooperative methods, respectively.

Cooperative methods allow each individual basic behaviour to contribute towards the

overall agent behaviour, with different strengths. Thus in an abstract sense, the overall

behaviour may be considered a weighted average of the basic behaviours. Arkin [40]

proposes such an approach, based on vector summation of the basic behaviours. By

contrast, in competitive methods, basic behaviours compete with each other for the overall

agent behaviour at any given time. A competitive method that has proven to be effective

for a number of robot control tasks is the subsumption architecture originally proposed
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in 1986 [39]. In a subsumption architecture, behaviours are ordered in a layered fashion

with more important behaviours taking preference over those less important.

In terms of behaviour-based control methods, the subsumption architecture was the pri-

mary approach taken in this project. Thus, the remainder of this chapter will focus on

the subsumption architecture. First, its implementation will be more fully described,

followed by a detailed description of various subsumption-based control strategies related

to mobile navigation and swarm behaviour. Finally, the results of simulations using these

control strategies will be presented and discussed.

5.2 Subsumption Architecture

5.2.1 Description

The design of mobile robot controllers can be a challenging task because of the dynamical,

non-linear interactions between each agent and its environment [1]. The problem lies in

the fact that an agent’s sensory input at any time is determined by the environment it is

in, as well as the previous actions taken by the agent. Classical approaches to solving this

problem have been based on the agent first perceiving its environment, planning which

actions to take and finally executing those actions [1]. However, these approaches have

had limited success for various reasons [1].

The subsumption architecture attempts to overcome the problem of mobile robot control

by decomposing overall agent behaviour into a series of independent behavioural layers

[39]. Each layer corresponds to a particular basic behaviour, which provides a direct

mapping from sensor inputs to motor outputs. Behaviours can also be designed to be

active or inactive under certain conditions. For example, a collision avoidance behaviour

may only be active when the agent is near an obstacle or wall (or more precisely, when the

agent’s sensor inputs indicate an obstacle is nearby). Layers are ordered by importance,

as shown in Figure 5.1 on the following page.

Coordination of behaviours works as follows: starting with the most important behaviour

and moving to the least important, the first behaviour that is in an active state is chosen

to be the overall behaviour and subsumes all others. For example, in the architecture

shown in Figure 5.1, the controller would first check if the collision avoidance behaviour

is active, as it is the most important. If active, that behaviour subsumes the others

and becomes the overall behaviour of the agent. If inactive, the next most-important

behaviour is checked, and if active, executed. This process continues until an active

behaviour has been found. If no behaviours are active given the current sensory input,

no action is taken.
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Figure 5.1: A possible subsumption architecture showing importance of behaviours and
flow of execution.
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Figure 5.2: Agent diagrams showing collision avoidance cases. (a) A typical agent sensor
configuration, showing (in orange) the areas in which an obstacle will activate the CA
algorithm. (b) A sensor activation conflict. (c) Deadlock position resulting from the
conflict shown in (b).

5.2.2 Collision Avoidance

The problem of avoiding collisions between agents and obstacles can be solved in a number

of ways, most of which are dependent on the agent’s sensory configuration. In this section

an explanation will be given of the particular collision avoidance (CA) behaviour which

was found to be sufficient for use throughout this project. However, it is noted that

different CA algorithms may give different results.

The CA algorithm used is a basic one, designed for the agent sensor configuration shown in

Figure 5.2, but can be adapted to work on any agent with three forward-facing proximity

sensors. Essentially, if the reading on a particular sensor is below a minimum specified

value, the agent attempts to avoid the obstacle. A sensor will be called ‘activated’ if it

returns a reading lower than the minimum specified value, meaning that it is detecting

an object. The areas within which an obstacle must lie for this to occur are shown as

orange segments in the figure. For the side sensors, avoidance is achieved by turning away

from the obstacle until the obstacle is no longer within the minimum distance. This can
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be performed using either a stationary (agent turns ‘on the spot’) or translational (agent

turns and translates) turn, but with different effects (discussed below).

For the front sensor, a number of methods of moving away from an obstacle were trialled.

The initial method used was to force the agent to move directly backwards for a specified

distance, and then turn either left or right, based either on a random decision or a pre-

defined tendency. This requires putting the agent into a state of non-sensory execution,

during which time its actions are not being made based on the state of its sensors, but

rather based on a previous decision, which can have undesirable effects such as collisions.

Instead, it was decided that, similar to the case with the side sensors, an obstacle within

range on the front sensor should cause the agent to turn. Initially the direction of turn

was chosen randomly at each discrete event during which the front sensor was found to be

active. However, the consequence of this was that left and right turns were executed with

approximately equal frequency, resulting in no net turn. As a solution to this problem,

it was decided that each agent should have a pre-defined ‘turning tendency’, being either

left or right. Under this regime, whenever the front sensor is activated the agent simply

turns in the pre-defined direction, until the front sensor is no longer activated.

It is apparent that a conflict may arise if two sensors are activated at the same time, for

example while navigating a narrow corridor as shown in Figure 5.2 (b). The agent’s left

and right sensors are both detecting obstacles within the minimum distance and are thus

both attempting to turn the agent. Which action is taken will depend on the specific

way the CA algorithm has been implemented. In the current implementation, the right

sensor is checked after the left sensor, meaning that the action of turning left will be the

one that persists. However, once the agent has turned, a further difficulty arises, shown

in Figure 5.2 (c). In this new state, only the agent’s left sensor detects an obstacle, so

the agent turns right, bringing it back into state (b). If the agent is making stationary

turns the net effect will be that agent oscillates indefinitely around state (c). Note that

a similar, but symmetrical, scenario would occur if the CA algorithm checked the left

sensor last.

There are a number of ways this problem may be solved. The CA algorithm may be

written so as to disregard the side sensors if they are both activated, in which case the

agent would ‘zig-zag’ through the corridor, turning each time its front sensor is activated.

The chosen solution was to use translational turns instead of stationary turns, meaning

that the agent would still exhibit the oscillation described above, but at the same time

would move forward and eventually out of the corridor.

The behaviour of an agent following the CA algorithm can vary significantly depending

on the threshold distance at which avoidance is performed, as well as which sensors are

checked for obstacles. This behaviour can, depending on the circumstances, be unde-
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sirable. For example, if the diametrically-opposed left and right sensors are checked for

obstacles, the agent will turn a greater angle to avoid such obstacles. This may lead to

poor map traversing behaviour or other undesirable effects.

5.2.3 Swarm Behaviours

Once the basic behaviour of collision avoidance had been implemented, the subsumption

architecture was extended to include higher-order behaviours that would give agents the

ability to form swarm-based geometries. Two such geometries were implemented: static

agglomeration and the formation of chains (“leader-following”).

These simulations were implemented using decentralised coordination, with unshared

local information, in the absence of communication and internal representations about

the environment. As mentioned in Section 4.3.2.1 on page 33, agents’ IR sensors are able

to distinguish between obstacles and other agents. This ability is critical to the success

of swarming behaviour. Without the ability to distinguish directly between agents and

obstacles, such a distinction may have to be inferred from whether an object is perceived

as stationary or moving (under the assumption that obstacles are stationary), which is a

significantly harder task.

For swarming control strategies, two quantities describing the relative positions of other

agents are consistently useful: the position of the centroid of visible agents and the

position of the nearest neighbour (NN). When calculating these quantities there is the

additional possibility of including data only from particular sensors (e.g. forward-facing

sensors), to obtain the desired behaviour. Assume an agent has n sensors returning

distance readings of d1, d2, . . . , dn with positions in the agent’s local coordinate system

of c1, c2, . . . , cn and orientations in the agent’s local coordinates of θ1, θ2, . . . , θn. If we

denote the unit vector in the θ direction as θ̂, then it is possible to define the centroid of

all visible agents, x̄, using a vector average, viz.

x̄ =
1

n

n∑

i=1

(ci + diθ̂i) . (5.1)

Note that x̄ is in the agent’s local coordinate system. Similarly, we might define the

position of the nearest neighbour in the forward direction, xNN,f , as

xNN,f = ct + dtθ̂t t = argmin
y∈{p |−90◦<θp<90◦}

dy (5.2)

Further detail on the agent’s local coordinate system is given in Appendix A.4 on page 138.
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Figure 5.3: Schematic showing subsumption-based control strategies used for swarm be-
haviour tasks. (a) Agglomeration strategy. (b) Chain formation strategy.
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Figure 5.4: Method of moving towards centroid of visible agents in an agglomeration
strategy.

5.2.3.1 Agglomeration

In order to implement agglomeration behaviour, each agent was programmed with a

three-layer subsumption-based control algorithm, as shown in Figure 5.3 (a).

Essentially, agents would explore the map while avoiding collisions, but if their sensors

detect any other agents, then immediately move toward the centroid thereof. The centroid

is calculated by means of equation 5.1. This strategy has the merit that no explicit

planning is required of where to agglomerate, nor is it necessary for agents to know

whether they are in the centre a swarm or on the perimeter; their actions are the same

regardless. In order for agents to move toward the centroid, they are programmed to

turn toward the centroid if it lies more than a critical angle away from their forward

orientation, as illustrated in Figure 5.4.
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If the centroid lies within that critical angle then the agglomeration layer of the sub-

sumption architecture is no longer active, and higher-order behaviours are evaluated. Al-

ternatively, the agent could be instructed to only continue with higher-order behaviours

(such as exploration) if the distance to the centroid exceeds a critical value (this will be

discussed in Section 5.3.2).

5.2.3.2 Chain formation

Chain formation can be a particularly useful swarm behaviour, as it allows completion

of tasks that may not be possible by agents acting individually. The greatest challenge

in designing a control algorithm to produce emergent chain formation is how to decide

which agent should become the leader of a particular group. The leader is free to move

in any direction and thus choose the trajectory the group, whereas those agents behind

the leader are required to follow. Clearly, if centralised coordination were present, the

problem of chain formation becomes almost trivial.

Even if centralised coordination is not possible, if agents are able to communicate with

each other it would be possible to establish leadership on the basis of this communication.

For example, if two agents approach one another and it is not clear which should lead

and which should follow, they could each generate a random number, communicate their

number to the other agent, and the agent having chosen the lower number then begins

to follow the other agent.

In the absence of central coordination and inter-agent communication, a control structure

is therefore required that allows agents to sometimes follow and sometimes explore freely.

Such a control algorithm is easily designed by means of a subsumption architecture, as

illustrated in Figure 5.3 (b). Again, with collision avoidance as the base behaviour, agents

explore the map until they detect one or more other agents, at which point they move

towards the closest of these agents, but only if said agent is positioned in front of the

first agent. This last condition is crucial as it ensures that all agents within a chain

will only follow those that are ‘in front’ of them (where ‘in front’ means ‘ahead of the

direction of the travel’). If this condition is not enforced, agents will not form chains but

will instead agglomerate, although in a more dispersed fashion than with centroid-based

agglomeration because each agent only approaches its nearest neighbour.

The middle layer of the subsumption architecture becomes active whenever another agent

is detected. When this layer is active, the agent calculates the position of its nearest

neighbour by means of equation 5.2. Once the position of the nearest neighbour has

been computed, the agent turns toward this position in a fashion identical to that for

centroid-based agglomeration, shown in Figure 5.4 on the preceding page.
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start
end

Figure 5.5: Simulation trace of a single agent employing a subsumption-based map ex-
ploration algorithm with collision avoidance.

5.3 Simulation Results and Discussion

While the previous section presented and discussed the theory of the various behaviour-

based approaches that were implemented, this section will focus on the problems en-

countered and results obtained during actual simulations. Each of the three behaviours

previously described will be considered, namely collision avoidance and the swarm be-

haviours of agglomeration and chain formation.

5.3.1 Collision Avoidance

The results of a simulation using the CA algorithm described in Section 5.2.2 are shown in

Figure 5.5. A two-layer subsumption architecture was used, with a base behaviour of col-

lision avoidance (most important) and the higher-order behaviour being map exploration

in a straight line.

The agent avoids all obstacles and eventually reaches all areas of the map, despite the
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Figure 5.6: Randomised initial agent positions for an agglomeration simulation with 50
agents.

presence of narrow corridors. If desired, the agent’s ability to explore the map could

be improved, for example, by instructing it to make random turns at specific intervals,

rather than always moving in a straight line.

5.3.2 Agglomeration

A simulation of the agglomeration algorithm was performed using a critical angle of 10

degrees on either side, meaning that if the computed centroid of visible agents did not

lie within 10 degrees of a particular agent’s forward direction, the agent would turn

toward the centroid. Agents were initially randomly placed on a map, and allowed to

agglomerate. To assist with diagnosing agent behaviour, grey lines are drawn from each

agent to the centroid of all the agents it can sense.

The randomised initial agent positions are shown in Figure 5.6, and the state of the

simulation after 1000 and 3000 time steps are shown in Figure 5.7 and 5.8, respectively.

Before analysing the behaviour that was observed, it is worth discussing some of the
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oscillation

Figure 5.7: Results of an agglomeration simulation with 50 agents after 1000 time steps.
The grey lines emanating from agents indicate each agent’s perception of the centroid of
other agents.

problems detected during the simulation.

After running and observing simulations using the agglomeration control strategy a num-

ber of times, a number of shortcomings became evident. In the original subsumption-

based agglomeration algorithm described in Section 5.2.3.1, the only circumstance under

which the agglomeration layer would become inactive (i.e. pass control on to higher-

order behaviours) is if the computed centroid lay within the specified limits. However, it

is possible that, under certain circumstances, it may never actually occur that the agent

reaches a state where the centroid lies within the specified angle.

This anomaly is due to the information provided by the sensors being incorrect, for two

reasons: the agent’s incomplete sensor field and the discretised nature of the sensors.

The former is self-explanatory: it will almost always be the case that there are ‘blind

spots’ in an agent’s sensory field, meaning that a slight change in the agent’s orientation

can result in discontinuous changes in the agents that are sensed. For example, if the

agent shown in Figure 5.4 (a) were to rotate slightly to the left, the agent at the top
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Figure 5.8: Results of an agglomeration simulation with 50 agents after 3000 time steps.
The grey lines emanating from agents indicate each agent’s perception of the centroid of
other agents.

of the figure would no longer be sensed, and the first agent’s perception of the centroid

would move considerably. The second factor responsible for an agent not being able to

align itself with the group centroid is that the sensors are discrete. What is meant by

this is that each sensor only returns the distance to the nearest object it detects, with

which information the agent’s controller reconstructs the position of the corresponding

object that was detected, using knowledge of the sensor’s position and orientation in

local coordinates. It follows that any object detected by a particular sensor at a specified

distance will be perceived by the agent as being at the same position, regardless of where

the object was positioned within the sensor’s angular range.

The result of these inaccuracies is that, as an agent turns in an attempt to align with

the centroid, its perception of the centroid changes, as shown in Figure 5.4 (b). If the

new centroid position is on the other side of the agent’s forward-facing axis than the old

centroid position, the agent will oscillate between these two positions, all the while never

releasing control from the agglomeration layer. The way this problem manifests in agent

behaviour is that an agent will position itself at a comparatively large distance from the
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rest of the group, and oscillate between two states. This can be seen in Figure 5.7 on

page 63, marked “oscillation”.

Another minor problem was observed. When an agent had correctly aligned itself with its

perception of the centroid position, the agglomeration layer would become inactive and

flow of execution would transfer to the exploration behaviour. The result is that the agent

would move towards the centroid until the collision avoidance behaviour became active,

resulting in oscillatory behaviour. As a remedy for this, the agglomeration algorithm

was modified so that if the centroid lay straight ahead of the agent within a specified

distance, the agglomeration layer would become active and instruct the agent to remain

stationary. This was generally found to be effective.

It was initially expected that the agglomeration subsumption architecture would result

in all agents agglomerating into one large group. However, as shown in the simulation

results, many groups of varying size emerge. In hindsight it is trivial to explain such

behaviour: as soon as an agent is aligned with the centroid of its visible neighbours, and

come to be stationary, it will not move unless the position of the centroid moves. The

centroid position will only move if the other visible agents in the group move. Thus it is

possible that a form of local convergence emerges, in which agents form groups of 2 or 3.

In order for global agglomeration to be achieved, the algorithm would need to be modified

to allow groups to move once they have formed. Such group movement does occur in

the present algorithm, but its occurrence is not guaranteed by design. The behaviour

of groups moving together can occasionally emerge from the interaction between the

subsumption layers activating at unexpected times, as well as the fact that sensors are

relatively sparse on the posterior of the agent, meaning that it is possible for individual

agents to inadvertently ‘lead’ a group because the group is not visible to the agent.

However, if any of the agents in the group move into the leader’s sensory vision, the

leader will turn around and move towards the group.

While it is possible to observe and analyse a multitude of other problems and behaviours

in this simulation alone, the core objective of agent agglomeration has been achieved.

The very fact that these problems and unexpected behaviours were observed in simula-

tion highlights the usefulness of a simulator: a priori analysis of control strategies may

leave the analyst certain that a particular emergent behaviour will result, but it is only

by simulation that unexpected behaviours are exposed. It is interesting to note that,

while simple rules can lead to complex emergent behaviour, it is equally true that simple

rules are not necessarily simple to analyze; this is, in essence, the reason for creating a

simulator.
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Figure 5.9: Screen capture from a chain formation simulation showing most agents having
formed into groups.

5.3.3 Chain Formation

The results of a simulation (in file chainFollowing.sim) using the chain formation rules

given above are shown in Figures 5.9 and 5.10. The simulations were performed on an

enclosed map with no obstacles. This was done to allow longer chains to form, since the

presence of obstacles results in the decomposition of chains.

These simulations show that chain formation rules lead to a greater degree of cohesion

than for agglomeration rules. This is thought to occur for two reasons: chains being

more dispersed than compact groups and the fact that once agents have assembled into a

chain, they continue to move. That chains are more dispersed increases the chance that

individual agents will find a particular chain, since a chain formation occupies a greater

span of map space than the corresponding compact group. Additionally, once agents

have assembled into chains, they continue to explore the map in their groups, leading to

the merging of separate chains. This prevents the local convergence seen in the previous

section where agents would stop moving once they had formed small groups.
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Figure 5.10: Screen capture from a chain formation simulation showing how chains can
bend (bottom) and decompose (top).

Since all agents were programmed to move at the same speed, they would tend to follow

other agents at a distance equal to the maximum range of their sensors. This resulted in

chains decomposing more frequently, because only a slight discontinuity in the motion of

an anterior agent was required for it to move outside of the field of vision of the posterior

agent. The result is that the posterior agent would no longer follow the anterior agent, but

rather continue to explore the map. This was particularly prevalent near obstacles (such

as walls) where highly irregular behaviour is observed while chains undergo a process of

reorganisation.

To solve this problem, the chain formation rule was modified so that once an agent senses

another agent, it accelerates towards that agent until they are a specified distance apart.

This means that the average spacing between agents in a chain is decreased, with the

result being that greater irregularities in the behaviour of anterior agents are required for

the chain to decompose; therefore, longer chains form.

From these simulations it was observed that agents following chain formation rules exhibit

a number of emergent behaviours. For example, when the agent at the front of a chain
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approaches an obstacle, such as a wall, its collision avoidance behaviour becomes active

and causes the agent to turn away from the wall. If the agent is able to turn away from

the obstacle fast enough so that the collision avoidance behaviour of the posterior agent

does not become active, the chain will simply change direction, intact. This was observed

to occur when agents approach obstacles obliquely, as they are able to turn away from

the obstacle in a relatively short time. However, if the front agent takes longer to turn

away from the obstacle, the collision avoidance behaviour of the posterior agent becomes

active. This results in the second agent turning away from the first. This was observed

to either lead to the formation of two new chains, or to the former leader rejoining the

original chain, but in a posterior position.

Other interesting emergent behaviour occurs when two chains meet, as shown near the

top of Figure 5.10 on the preceding page. In the case shown, a chain of three agents

is approaching a longer chain of eleven agents. Because the smaller chain is aligned

opposite to the direction of the larger chain, the behaviour that emerges in this case is

the formation of two new chains. However, if the smaller group were to be aligned with

the larger group, it has been observed that a single larger chain will result.

The chain formation rules outlined in Section 5.2.3.2 were observed to be generally effec-

tive. However, one problem with these simple rules that was mentioned earlier is that, in

the absence of communication, there is no explicit method for assignment of the roles of

leader and follower. This is not a problem if agents approach each other from behind or

obliquely, as agents only attempt to follow other agents detected in their forward sensors.

However, if two agents approach one another ‘head on’ (i.e. at an angle of 180◦), the result

is that they will keep moving toward each other until their collision avoidance behaviours

become active, at which point they turn away from each other and disperse. A number

of solutions to this problem were contemplated but not implemented, such as each of the

two agents performing a stationary turn at a randomly-selected speed. The agent which

turns at the slower speed will have the other agent in its sensory field for longer, and

thus become the follower once the faster-turning agent has moved away. This rule would

thus be an attempt at using the environment to effect a form of implicit communication

between agents. Further investigation of this phenomenon is recommended.

5.3.4 Other Swarm Behaviours

While only the swarm behaviours of agglomeration and chain formation have been im-

plemented and shown here, it is certainly possible to recreate, using the simulator, other

behaviours discussed in Section 3.2 on page 15. For example, simulation of a distributed

resource allocation task which can only be accomplished by cooperative behaviour is

presented in Chapter 9.
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Figure 5.11: Schematic showing different velocity-matching cases for an agent with dif-
ferential wheel locomotion.

The common swarm behaviour of flocking can be thought of as a modification of agglom-

eration where the the agglomerated group continues to move, rather than remain at rest.

A simple rule that would effect this behaviour is for each agent to match the velocity

of the centroid of its local neighbours, as shown by the Boids simulation presented in

Section 4.2.3 on page 27. While the simulator is not inherently unable to perform such

a simulation, agent configurations using differential wheel locomotion are not easily able

to perform velocity matching. This is illustrated in Figure 5.11.

Suppose the agent in Figure 5.11 (a) in a particular time step perceives the local centroid

to be at the position marked ”old centroid” (grey dot) and at the next time step this

position changes to that marked by ”new centroid” (black dot). From the change in

position of the centroid, the agent is trivially able to compute the apparent centroid

velocity,

~v = ~m∆t . (5.3)

In order to match this velocity the agent need only move directly forward. The ∆t appear-

ing in equation 5.3 refers to the refresh rate of the agent’s sensors which, as mentioned in

Section 4.3.2.1, is assumed to be equal to the refresh rate of the discretised simulation.

It is further assumed that the agent has knowledge of this sensor refresh rate and also

knows the relationship between motor speed and wheel tangential velocity, thus enabling

it to control its motors in such a way that it can match the velocity of an object detected

by its sensors. These are not unreasonable assumptions as these quantities are fixed,

physical properties of the robot and could thus be pre-programmed into the controller.

In contrast, consider the agent in Figure 5.11 (b) and the corresponding centroid positions.

Because the agent is only able to move in the direct forward or reverse directions, it is
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unable to match the apparent centroid velocity.

Finally, suppose that the agent shown in Figure 5.11 (c) is attempting to match the

centroid velocity shown. If we construct point T by adding the vector ~m to the agent’s

position, then the agent is able to match the centroid velocity if it can move to point

T within a single time step. While unable to control its own instantaneous velocity to

match the centroid velocity (because of the constraint of only being able to move forward

or backward), the agent is able to set its motor speeds in a ratio that will result in its

arc of travel passing through point T, thus making its average velocity over the time

step equal to the apparent centroid velocity (details of how this is possible are given in

Figure A.1 on page 127). While the same method could be applied by the agent shown in

(b), it would result in the agent being aligned away from the direction of centroid travel.

This algorithm was not implemented in the project, but it is recommended that it be fur-

ther investigated. Additional consideration should be given to issues of deadlock (when

agents in a group do not move because the group centroid is not moving) and the effec-

tiveness of the algorithm for cases similar to that shown in Figure 5.11 (b).
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Chapter 6

Neural Networks

Neural networks are a class of mathematical models that attempt to map sets of inputs

to outputs, using known data to approximate unknown data. Such models are more

correctly known as artificial neural networks, to contrast them with biological neural

networks, by which they were originally inspired. This chapter will introduce the basic

theory of neural networks, followed by a description of the techniques used to train them.

The mathematical basis of their operation will then be explored, together with a basic

analysis of their numerical stability and accuracy.

6.1 Introduction

In general, an artificial neural network (ANN) is a collection of nodes connected by

weighted links, as shown in Figure 6.1 on the next page. The way that ANNs are struc-

tured and perform manipulations on information are said to be analogous to the biological

neural networks in animal brains [41], although the number of synapses in human brains

is typically much larger (on the order of 1014 [42]). ANNs can be made to learn on a

similar operational principle to animal brains: they are shown sets of training data in

the form of input and output pairs, and are later required to reproduce the same output

when given identical input data. However, this much can be achieved by simple lookup

tables. The property of ANNs that makes them ‘intelligent’ is the fact that when they

are given input data that is similar, but not identical, to inputs they have previously

learned, they are able to approximate the correct output data. The accuracy of these

inferences will be discussed in Section 6.4.

Following this biological similarity, the nodes in ANNs are sometimes called ‘neurons’

and the links between the nodes ‘synapses’, from their counterparts in BNNs. These

terms are often used interchangeably. Essentially, neurons are used to transmit signals
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Figure 6.1: A simple feed-forward neural network with 3 input neurons, 5 hidden neurons
and 2 output neurons.

from an input layer to an output layer, with the ANN’s only interaction with the external

environment occurring at the input and output layers, respectively. ANNs can be designed

in several architectures, the simplest of which is the feed-forward architecture shown in

Figure 6.1, where the input signals are transmitted forward from the input layer, through

any hidden layers, to the output layer.

In 1943, McCulloch and Pitts [43] proposed a simple model for the operation of each

neuron, which still sees extensive use today. In the model, each neuron has a number

of inputs and a single output, with the output of the neuron yi being a function Φ of

the sum of all incoming links xj weighted by the strength of the synaptic connection wij.

This is depicted in Figure 6.2 on the following page and can be written mathematically

as

yi = Φ(
n∑

j

wijxj)

McCulloch and Pitts [43] originally proposed using the step function shown in Figure 6.3

(a), for which there is only non-zero output when the weighted sum of incoming signals

exceeds a threshold (usually zero). Accordingly, the output function Φ is sometimes

known as the activation function because it dictates when the neuron becomes active.

Because of the binary nature of the step function, it is only able to transmit one bit of

data, regardless of the amount of data it was provided (in the form of input signals).

For this reason, it is sometimes necessary to make use of alternative activation functions.

Other common activation functions [1] are linear (Φ(x) = kx), logistic (Φ(x) = 1
1+e−kx ),

shown in Figure 6.3 (b) and (c), respectively. The hyperbolic tangent is also commonly

used in place of the logistic function, and will be further discussed in Section 6.2. The

logistic function and the hyperbolic tangent are often collectively referred to as sigmoidal
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Figure 6.2: Operation of an individual neuron/node in a neural network. The neuron has
several inputs xj and one output yi.

functions, owing to their S-shaped appearance when graphed.

The advantage of these activation functions over the step function is that they can encode

infinitely more data than the step function, due to their graded output. Another impor-

tant property of activation functions is the numerical range of output that is produced.

For example, both the logistic and hyperbolic tan functions have horizontal asymptotes,

whereas the linear function has none. This is neither an outright advantage nor dis-

advantage; the data being processed by the ANN will determine which functions are
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Figure 6.3: Commonly used neuron activation functions. These are the (a) step, (b)
linear and (c) logistic (k = 1) functions.
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appropriate. It will be shown later in Section 7.3 that linear functions can be appropriate

when bounds on the output data are not known, and that sigmoidal functions are useful

to enforce bounds on data in order to ensure numerical stability.

Step activation functions have the inherent property that a neuron only becomes active

when a particular threshold value of the net input,
n∑

j

wijxj, is reached. In order to

obtain a similar property in neurons with continuous activation functions, use is made of

an additional incoming signal, known as a bias signal. This has the effect of offsetting

the net input by an amount independent of the other incoming signals. The bias signal

is usually implemented by means of a bias unit : a fictitious unit feeding into the neuron

with a constant value of 1 or -1, and an associated weight.

It is apparent that, for a particular set of input data, the output of an ANN is wholly

dependent on the value of the synaptic weights. Changing the network weights will there-

fore alter the output signals for a particular set of input signals. This fact is utilised to

train the ANN; that is, the weights of the network are systematically altered so that when

known input data is fed into the network, the correct known output data is produced,

to within some level of accuracy. This ability of the network weights to change is known

as synaptic plasticity, and is the mechanism used by animal brains to record information

in memory [41]. The application of synaptic plasticity to the problem of training ANNs

will be discussed in the next section.

From a mathematical point of view, the operation of a neural network is identical to that

of an interpolator, or function approximator. Starting with an ANN with random initial

weights, the network is systematically altered until known input produces desired output,

to within some degree of accuracy. As alluded to earlier, the useful property of an ANN

is the ability to produce output that is close to the correct output when input data that

is similar to previously-learned input data is provided. Mathematically, the network is

therefore performing a regression, since there is no guarantee that the output data for

previously-learned input data will be identical to the correct output that was previously

learned. This will be further discussed and illustrated in Section 6.3.

The ANN architecture depicted in Figure 6.1 is known as a feed-forward architecture.

Neurons can be conceptualized as existing in distinct layers, with signals passing in a

linear fashion from one layer to the next. The network shown in the figure is known

variously as a three- or two-layer network [1], depending on whether the input signals are

regarded as a layer. It is apparent that if the input signals were to be relayed directly

to the output neurons, the output of the network would be a linear combination of the

input signals (or more correctly, the input to the output neurons’ activation functions

would be a linear combination of the inputs). This places severe constraints on the type

of data that may be learned by the network, so often use is made of one or more hidden

Chapter 6: Neural Networks 74



University of Cape Town Department of Mechanical Engineering

layers that lie between the input and output layers. This has the effect of allowing the

ANN to learn data when the outputs are not a linear combination of the inputs.

As mentioned earlier, ANNs can be designed in a number of different architectures and

need not have the simple structure depicted in Figure 6.1. While such feed-forward

networks were found to be sufficient for this project, it is worth noting the existence of

more complex network designs such as recurrent architectures, where neurons do not reside

in conceptually distinct layers, but rather outputs from neurons are fed simultaneously to

neurons in the same and forward layers [41]. This can lead to complex network behaviour

as a function of time [1].

6.2 Training

The process of training a neural network consists of presenting various correct input-

output pairs to the network. While an algorithmic description of the method is beyond

the scope of this section and can be readily found in literature, a qualitative overview is

given.

The most common method of training non-linear neural networks (that is, networks with

non-linear activation functions) is known as back-propagation of error [42]. The overall

principle is as follows: a specific set of inputs is fed forward through the network, produc-

ing the network’s current approximation of the corresponding output for that input data.

The error between the approximated output and the correct output is then determined,

and this error back-propagated through the network. This is done by examining the

gradient of each activation function, and determining the required change in the nodal

weights to give the correct output. This is done backwards, from output to input, for each

layer. For a network with a single hidden layer, the operation is performed only on the

output and hidden layers. The mathematical basis of this is an optimisation technique

known as gradient descent, which essentially seeks to minimise the error between correct

and approximated outputs.

Because gradient descent requires the activation functions to be differentiable, back-

propagation eliminates the use of step activation functions. While the logistic function

given above meets this criterion, it has been shown by [42] that the hyperbolic tangent

function provides better numerical behaviour. It is similar in shape to the logistic func-

tion, except its asymptotes are at y-values of -1 and +1, not 0 and 1, as with the logistic

function. It provides better numerical behaviour because its output is centred around 0,

as opposed to the logistic function, which is centred around 0.5.

As mentioned, the basic method for training a network is to calculate the required change
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Figure 6.4: Schematic of a three-layer neural network used for performing regression.
Redrawn from [42].

in the nodal weights to give the correct output for a given output. However, the weights

are not simply replaced with the newly-calculated values [42]. Instead, a parameter known

as a learning rate is implemented, denoted by η, where 0 < η < 1. The learning rate

is essentially a weighting between old information and new information, and allows the

network to learn at a controlled rate to prevent divergent behaviour.

6.3 Neural Networks as Regression

Thus far it has been shown how neural networks can ‘remember’ data on which they have

previously been trained. This is achieved by changing the weights of the network every

time a new input-output pair is learnt. The goal of this section is to demonstrate that

the apparent ‘memory’ of a neural network is due to the persistence of these weights and

that the ability to learn new data is no more than mathematical regression. This is done

to provide support for the ideas on speed, stability and accuracy presented in the next

section.

Suppose we have a neural network consisting of one input node, a single hidden layer of 2

nodes with hyperbolic tangent activation functions and a single output node with linear

activation, as shown schematically in Figure 6.4. Nodal weights are labelled a, b, . . . , f, g.

If we denote the output of the network y and the input x, then it is possible to write

y = f tanh(dx+ b) + g tanh(ex+ c) + a . (6.1)

The output of this network will always have this form. The difference between two

such networks trained on different sets of data will simply be the values of the weights

a, b, . . . , f, g. Therefore, when a neural network is trained with a particular set of data
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Figure 6.5: Output of a neural network with one hidden layer, trained with noisy data.
Networks (a) and (b) used identical learning rates and data points.

(e.g. by backpropagation), what is actually occurring is a systematic altering of these

weights so as to reduce the mean squared error between learnt data and the approximation

thereof. To demonstrate this graphically consider a set of noisy data shown by the red

circles in Figure 6.5.

Using the neural network class that was developed for use in this project, a neural network

with randomised initial weights was trained with this data by presenting the data points

in random order, 200 times in total per data point. Two different cases of the network’s

outputs for all x values in the domain of the data points is shown in Figure 6.5 (a) and

(b).

In graph (a), a good fit to the data is seen. The network has clearly performed regres-

sion on the data. However, graph (b) shows the network having performed a poor fit,

exhibiting what is known as bias. Generally, behaviour similar to graph (b) is seen only

a small percentage of the time (less than 10% during simple testing). In informal terms,

it results from the particular order in which the data points are presented. In some cases
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the fitted curve can initially be a straight line (because the initial data points are close to

being in a straight line), with the result that the curve can remain a straight line, even in

the presence of new data [42]. Methods for overcoming this problem will be mentioned

in the next section.

6.4 Speed, Stability and Accuracy

As was shown in the previous section, neural networks essentially perform a generalised

regression on input-output pairs. They are therefore prone to the speed, stability and

accuracy issues found in typical regression algorithms. This section will briefly highlight

some of these issues, with reference to the practical techniques which were used in this

project to prevent such problems occurring.

An interesting property of neural networks not found in typical function approximators

is that the accuracy of learnt information is strongly dependent on the number of times

the network was trained using that information, as well as the order in which the data

was presented. One consequence of this is that ANNs can ‘forget’ information that was

previously learned [41]. This can be both advantageous and problematic, particularly in

the case of agents which are constantly learning from their environment [44]. Forgetting

can be useful if the agent is to adapt to a changing environment, in which case old,

irrelevant data will be discarded and the corresponding input signals mapped to new

outputs. However, if the agent is attempting to approximate a function that does change,

such as with the collision avoidance behaviour detailed in Chapter 8, forgetting can be

particularly undesirable.

A number of methods may be used to overcome the problem. Interleaved learning [45]

involves breaking the input data into several overlapping sections, and learning them

in succession. However, this method is more applicable to offline learning [45], and is

therefore not suitable for autonomous robots. A method suitable for online learning is

consolidation learning [44] which makes use of a small ANN for online learning, which

network is subsequently used to train a larger, offline ANN at a later stage. It is thought

that this mimics the learning and interference patterns found in in the human brain [44].

Catastrophic forgetting was not found to be particularly problematic in this project.

The method by which the initial weights in the network are determined can have a

significant effect on network behaviour. If the initial weights are ill-suited to the particular

data on which the network will be trained, convergent behaviour can result [42]. The

most common technique is to use random numbers in the range (−r, r), for some small

number r. For data following Gaussian distributions, it has been shown that the value of
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r least likely to lead to network divergence is ri =
1√
Ai
, where Ai is the number of weights

feeding in to each node [42].

The other major parameter of a neural network is its learning rate. However, unlike the

initial weights, there is no well-established method for determining learning rates a priori.

A general heuristic that may be used is to start with a learning rate of η = 1, and decrease

the rate until convergence of the network occurs [42]. However, since learning rates close

to 1 can lead to divergence in certain circumstances, a global learning rate of η = 0.5 was

used throughout this project, without any network divergence being experienced.
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Chapter 7

Reinforcement Learning

Reinforcement learning is a form of unsupervised machine learning that utilises an in-

ternal critic to reward or punish an agent’s actions, which are made on the basis of the

environmental state at any given time. This chapter will present the theory of rein-

forcement learning necessary for the collision avoidance problem presented in the next

chapter.

It should be mentioned that rigorous, formal methods for the analysis of reinforcement

learning problems have been developed. Despite this, an attempt will be made here

to introduce only the minimum theory and notation required for adequate analysis of

the collision avoidance problem which follows. General information will also be given

about the applicability of reinforcement learning techniques to other tasks relevant to

autonomous robotic agents. Most of the information contained in this chapter is a sum-

marised survey of the relevant concepts presented in a 1998 book by Sutton and Barto [2],

widely recognised as the definitive work on reinforcement learning [1, 46].

7.1 Basic Theory

In essence, reinforcement learning (RL) is a technique that allows agents to formulate

a mapping from situations to actions. This mapping is made in such a way so as to

maximise a numerical, scalar reward value [2]. In the context of an autonomous robotic

agent, RL helps agents decide which motor actions are best, given a particular sensory

input. The primary advantage of RL over other machine learning approaches is that it is

not necessary for a supervisor or critic to know correct input/output pairs. Rather, the

agent implicitly deduces the correctness of a chosen output for a given input based on

the magnitude of the reward the environment assigned to that decision. Additionally, the
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Figure 7.1: Information flows between agent and environment. Modified from [2].

internal critic does not need to correct sub-optimal actions; the agent will learn which

actions are optimal for a given state by means of exploration [2].

The general formulation of an RL problem is as follows, adapted from [2]. Consider an

agent interacting with its environment. At time t, the agent receives the state of the

environment st ∈ S, where S is the set of all possible states. Based on the environmental

state, the agent selects some action at ∈ A(st), where A(st) is the set of actions which are

possible in state st. In the following time step, the environment provides the agent with

two pieces of information: the new environmental state st+1, as well as a scalar reward

value rt+1. The reward rt+1 is temporal, and thus the reward associated with taking

action at in state st need not always equal rt+1.

There are thus three distinct signal flows in the agent-environment interaction: the agent

providing the environment with its chosen action, and the environment responding with

a new state and a reward for taking the chosen action in the previous state [2]. This flow

of information is shown graphically in Figure 7.1.

The agent’s method of choosing which action a to take at a particular time is called the

agent’s policy, and can be denoted by πt, indicating that the policy is liable to change.

The distinguishing factor in different RL approaches is how the policy is updated. One

such approach that will be discussed in Section 7.3 is Q-learning, where the notion of

utility is used to choose actions that appear to maximise future rewards.

In the context of a mobile robotic agent, care needs to be taken in defining the bound-

aries of the agent and environment. As mentioned in Section 2.3 on page 10, the terms

‘agent’ and ‘robot’ are used almost synonymously throughout this report. However, in

the context of agent-environment interactions in reinforcement learning, a careful distinc-

tion needs to be drawn between ‘agent’ and ‘robot’. While ‘robot’ refers to all tangible

apparatus that are part of the machine, including the physical controller, ‘agent’ is an

abstract term and refers to the part of the controller that selects actions based on sensory
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data. In the context of RL, then, the rest of the physical robot, such as sensors, motors,

wheels and chassis are considered external to the agent.

A crucial consequence of this distinction is that, while the value of the reward at each

time step may be calculated by the robot’s controller, the reward itself is still provided

by the environment, and is thus external to the agent. This distinction does not require

that the agent (in the sense defined in the previous paragraph) not know how the reward

is calculated. It is entirely possible that an agent knows precisely how reward is based on

states and actions, but still faces the problem of how to choose actions so as to maximise

long-term reward [2]. Consider the analogy of a person playing chess: the person (agent)

has full knowledge of the rules of the game that lead to a win (reward structure), but

choosing the sequence of actions that will lead to a win is far from trivial.

Thus, at the risk of repetition, it is critical that the reward computation be considered

as occurring in the environment, and relayed as a signal to the agent, as shown in Figure

7.1. A consequence of this conceptual framework is that the reward function encodes

information relating to what the goal of the agent is, and not how to achieve it. For

example, in the collision avoidance simulation presented in Chapter 8, the reward function

punishes agents for being within a certain distance to an obstacle. Crucially, the reward

function provides no instruction as to how an agent should avoid being near obstacles;

this is left up to the agent to learn [2].

While it may seem trivial or unnecessary to use RL to learn a basic behaviour such

as collision avoidance, which can quite easily be implemented in a deterministic control

function, the benefits of RL become readily apparent when the required task is too

complex for a behaviour-based approach. For example, an agent-based computer program

was written that learnt to play backgammon using RL [47] (or more correctly, it learnt

how to win). The program was given no more information than the rules of the game, and

a reward function that rewarded only a win and otherwise provided no further guidance.

By playing against itself thousands of times, the program was learnt how to win the

game so well that it could compete on the level of the world’s best players [47]. While

a conventional, analytical approach to the game is certainly possible, it is undoubtedly

much harder to resolve a winning strategy into a series of “if this, do that” rules. RL

in scenarios such as these, where reward is only provided after a long series of time

steps, suffers from what is known as the temporal credit assignment problem, and will be

discussed further later.

Having presented the basic theory of RL, the remainder of this chapter will focus on

specific details of RL implementation. The nature of reward functions will be discussed,

followed by an explanation of Q-learning and corresponding methods of encoding the

state-action space. Finally, the dilemma of exploration and exploitation will be briefly
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discussed.

7.2 Reward Functions

In informal terms, reward functions are a way of communicating to the agent which goals

are desirable but not how to achieve them. More formally, the goal of any agent in an

RL task is to maximise the reward received by the environment. Therefore, by selection

of a reward function that will return highest reward for results considered desirable by

the designer, it is possible to ‘coax’ the agent into make its goal of maximising reward

coincident with the designer’s goals.

With reference to Figure 7.1, the reward value rt+1 returned by the environment is a

function of the state st and the action chosen by the agent in that state, at. As previously

stated, the goal of an agent is to maximise reward. But since new reward values are

received at each time step, it is not well-defined which reward should be maximised.

This requires categorisation of tasks into two broad classes: episodic and continuing [2].

Episodic tasks are those which naturally repeat and can thus be decomposed into discrete

episodes, whereas continuing tasks have no clear terminal state.

Real-world tasks need not exclusively be episodic or continuing in nature, but their for-

mulation as RL problems should be exclusive [2]. For example, consider the problem of a

mobile robot learning to avoid collisions. This could be framed as an episodic task which

ends when the robot collides with an object, or as a continuous task where the robot

continually explores the map, occasionally colliding with obstacles. However, some tasks

are necessarily episodic because they have a terminal outcome, such as a game of chess.

For episodic tasks, there is a finite set of rewards r1, r2, . . . , rn where tn is the terminal

time step of the system (such as checkmate in a game of chess, or colliding with an obstacle

in the case of a mobile robot) [2]. It is possible to define the a function R(r1, r2, . . . , rn)

to be the total return, that should be maximised. Perhaps the most obvious choice for R

is

Rt = rt+1 + rt+2 + · · ·+ rn . (7.1)

By contrast, continuous tasks have no terminal state sn and we therefore require a way

to quantify total return in the absence of a terminal state. One such approach [2] is to

make use of a discount factor, γ, such that

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . . (7.2)
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The use of a discount factor places more weight on earlier rewards, with lower discount

factors corresponding to greater weight on earlier rewards. Clearly, if γ = 0, Rt = rt+1

and the agent seeks to maximise immediate reward. For convergence of Rt, it is apparent

that 0 ≤ γ < 1.

Note that in the case of episodic tasks, learning can only take place at the end of the

episode, since it is only then that the total reward R is known. In contrast, continuing

tasks allow learning at each time step. For tasks with a delayed reward (such as a chess

game where positive reward is only given for a win) the problem emerges of how to assign

credit for the total return to each individual action in a (possibly long) series of actions,

known as the temporal credit assignment problem [1, 2]. Different RL techniques solve

this problem in different ways. One such technique is Q-learning, which will now be

described.

7.3 Q-learning

7.3.1 Description

Q-learning is an RL technique that uses an action-value function to estimate the utility

to the agent of being in a particular state [48]. Informally, it is based on the notion that

some states may be more or less beneficial to be in than others, so the best actions to

select are those that put the agent in the most beneficial state.

More formally, denote V π(s) as the value of state s when the agent is following policy π.

The inclusion of the agent’s policy is necessary because the total future return that can

be expected from a particular state is dependent on the sequence of actions the agent

takes after being in that state, which actions are determined by the agent’s policy. Next,

define Qπ(s, a) as the utility (or usefulness) of taking a particular action a in state s, and

following policy π thereafter. This utility is largely based on the value of the succeeding

state, V π(s′), but will also be affected by the immediate reward received for selecting

action a in state s. To paraphrase the above notation in informal terms, the value of a

particular state is the return that can be expected from being in that state and following

a particular policy thereafter. Closely related to the value, the utility of performing a

particular action in a particular state is determined by the immediate reward received for

performing that action in that state, as well as the prospect of future returns from being

in the new state (which future returns are equal to the value of the successive state) [2].

The Q-learning approach is to define an action-value function Q(s, a) that is independent

of the chosen policy π. As agents learn, they continually update their internal mapping

of the utility function Q. A major strength of Q-learning is that it is policy-independent:
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agents can follow any chosen policy, while simultaneously gaining knowledge about the

mapping from state-action space to reward space. At any time, the agent can change its

policy and the learnt Q values remain valid. Specifically, as more learning occurs and the

agent is able to build a more accurate internal representation of the Q function, Q→ Q∗,

where Q∗ is the utility function for the optimal policy, i.e. the policy that will result in

greatest total returns.

As just mentioned, the agent continually refines its internal representation of the function

Q(s, a) as it gains reward information at each time step. Mathematically, the update

function for Q-learning [2] is

Q(st, at)← Q(st, at) + α
[

rt+1 + γmax
a

Q(st+1, a)−Q(st, at)
]

.

The new variable α is known as the Q-learning rate and expresses how quickly the Q

function is updated to include new knowledge and disregard old knowledge. This becomes

clear when rearranging the update equation,

Q(st, at)← Q(st, at)
︸ ︷︷ ︸

old value

(1− α) + α
[

rt+1 + γmax
a

Q(st+1, a)
]

︸ ︷︷ ︸

learned value

. (7.3)

Equation 7.3 makes explicit the fact that α is a weighting between the old and new Q

values.

The most computational work that is done by an agent during a Q-learning time step

is approximating the function Q∗, and there are a number of methods to do this. If the

state space and action space are both discrete, a simple look-up table may be used [48].

However, if either the state or action spaces are continuous, more optimal strategies exist.

These will be explored in the next section.

7.3.2 State-action Space Encoding

As already mentioned, it is the job of the agent to approximate the Q function and

continually update this approximation so that it can converge to the true Q function for

an optimal policy, Q∗. Neural networks serve well as function approximators. It would

thus be conceivable to use a single neural network to approximate Q. The input could be

a combined vector representing s and a, and the output of the network could be a single

node giving the corresponding Q value.

However, neural networks have difficulties approximating data where similar input values

give very different output values [42], as would be the case if the state and action values

were combined into a single input vector. There are a number of alternative conceivable
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methods of representing the state and action values, depending on whether both are

continuous, or at least one of them is discrete. The case of both being discrete can be

handled by a look-up table, as mentioned, or using one of the methods that will now be

presented for discrete data.

In some cases, both the state and action spaces may be continuous, but it is desirable

to discretise them to reduce complexity. Consider for example the action space of the

mobile robots presented in this project. Their action space can be represented as a vector

in ℜ2, with the elements corresponding to the left and right motor speeds. However, the

action space could be discretised into a finite number of such vectors, corresponding to

actions such as ‘directly forward’, ‘directly backward’, ‘stationary turn left’, ‘stationary

turn right’, and so forth. This was the approach taken in the collision avoidance problem

in this project and will be detailed in the next chapter.

In order to represent the utility function when at least one of the inputs is discretised, a

series of neural networks can be used, one for each discrete input [49]. For example, if

the action space is discretised, each action such as ’directly forward’ could have a neural

network associated with it. The input to each neural network would be the sensor values

(which can, but need not, be discretised) and the output for each network the Q value

corresponding to the state-action pair.

If both the state and action spaces are continuous, methods exist for constructing appro-

priate function approximators. One such method uses a neural network coupled with an

interpolator [50]. A vector representing the state value is the input to the neural network,

the output of which is a series of ordered pairs representing specific action values and

their corresponding Q values in the given state. A wire fitter interpolator is used so that

the Q value for any action value can be determined. Thus, if regarded as a single unit, the

neural network and interpolator operate as a function approximator which accept state

and action values and return Q values. The operation of this function approximator is

shown in Figure 7.2 on the next page.

When an updated estimate of Q has been calculated by means of equation 7.3, this Q

value is fed ‘backwards’ through the interpolator to produce a new set of ordered pairs, as

described above. The neural network is then trained to associate the new set of ordered

pairs with the original input data (the state vector), and the function approximator is

thus updated.
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Figure 7.2: Q-learning with continuous state-action spaces. x, u denote states and actions,
respectively. Reproduced from [50].

7.4 Exploration and Exploitation

In general, agents engaged in RL tasks (episodic or continual) attempt to maximise the

total return they receive, Rt. This is achieved by, at each time step, selecting the action

at that will result in highest return, based on past observation. For agents that have

developed an adequate mapping between state, action and reward, the previous statement

is unconditionally true, because agents have reliable knowledge of which actions will result

in highest reward in a given state. However, when knowledge of the state-action reward

mapping is incomplete, agents cannot be certain whether best reward will result from

an action whose reward value they have previously determined, or from an action whose

reward value is, as yet, unknown.

This dilemma is often referred to as the exploration versus exploitation problem, due to

the fact that agents need to decide whether to explore unknown state-action pairs (i.e.

determine the reward associated therewith), or to exploit previously-gained knowledge

about which action is best given the current state. There are a number of approaches

to resolving this dilemma. A popular method of resolving this problem, and the one

implemented in this project, is to use a Boltzmann probability distribution [1, 2, 46, 49].

With roots in thermodynamics, this probability distribution uses a single variable T

(originally to refer to temperature) to describe an agent’s propensity to explore or exploit.

Suppose that, in a particular state st, an agent can choose from a number of actions

ai ∈ A(st), i = 1, 2, . . . ,m. For convenience, denote Q(st, ai) as Qi. Then each action ai

has an associated Q value Qi, indicating the expected reward from taking that action in

the current state. Define a variable T > 0 to be the tendency of the agent to explore

the state-action space, with larger values corresponding to more exploration, and lower
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Figure 7.3: Boltzmann probability distribution, showing the probability of selecting three
actions A, B and C where QA = 3, QB = 2 and QC = 1.

values to exploitation. For a given value of T , the agent can select which action to take

based on a probabilistic approach, where

P (ai) =
eQi/T

∑m
k=1 e

Qk/T
(7.4)

To implement this rule, the agent’s policy is set such that it will randomly choose an

action ai with probability P (ai). To gain a sense of how these probabilities vary with T ,

a graphical aid is helpful. Suppose in a particular state three actions are available: A, B

and C, with corresponding Q values 3, 2 and 1, respectively. The graphs of P ({A,B,C})
as functions of T are shown graphically in Figure 7.3.

As can be seen in Figure 7.3, the probabilities of each action being taken approach

equality as T → ∞. Conversely, as T → 0, the probability of the action with highest Q

value being chosen approaches 1. In practice, an agent would begin with a high T value,

which is gradually lowered as the agent learns more about the mapping from state-action

space to reward. The result is that near the beginning of its learning process the agent

will often pursue actions that cause it to receive low reward. However, as T is lowered,

the agent will pursue these actions less frequently, instead selecting actions that return a

higher reward.
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Chapter 8

Reinforcement Learning for Collision

Avoidance

In Chapter 5, agents were given simple rules to follow and it was seen that complex

behaviours emerged from the interaction of these simple rules in a group context. While

many biological agents have instinctive knowledge of the rules they follow (that is, they

are born with such rules ‘programmed’ into their genes), a great number of biological

agents also learn from their environment the rules that, if followed, can lead to behaviour

beneficial to the individual and to the group as a whole. This ability to learn what is

advantageous shows a closer conceptual fit to the definition of agency given in Section

2.1. Seeking to reproduce this behaviour in simulated robotic agents, the task of agents

exploring a map, while avoiding obstacles, was attempted. While this behaviour had

previously been implemented in Chapter 5 through a behaviour-based (i.e. rule-based)

approach, the goal with the present simulation is to reproduce such collision avoidance

behaviour, but in the absence of specific instruction. This is achieved by using the theory

on artificial intelligence, and specifically reinforcement learning, that was presented in

the previous two chapters.

This chapter begins by explaining the conceptual foundations of the task, presents the

reward function used and ends with a discussion and analysis of the results obtained from

simulation.

8.1 Introduction

The key difference between the behaviour-based approach and the machine learning ap-

proach to robotics is that, in the behaviour-based methodology, desired agent outcomes

are decomposed (by the designer) into a number of basic behaviours. If the agent follows
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the behaviour, the overall outcome (in the individual and possibly group contexts) is

achieved [1]. The machine learning paradigm takes the view that agents are better able

to determine the optimal way to execute a task by being given feedback on how well they

are accomplishing the goals of the task, rather than being instructed specifically how to

execute the task. This is the approach presented in this chapter.

The goal of the simulation was to put agents in an unknown environment, with no knowl-

edge of how they should map sensor inputs to motor outputs, and have them learn to

explore the map as quickly as possible, all the while avoiding collisions with map ob-

jects. Agents are not made aware of the significance of sensor readings (i.e. they have

no knowledge that their sensory input refers to distances to objects). They are given no

basic behaviours to follow and are free to perform any set of actions. A reward function is

used to reward behaviour that the designer considers ‘good’, and provide negative reward

to behaviour considered ‘bad’ in the context of the task.

As was mentioned in Section 7.2, the reward function does not provide any guidance

on how to achieve the task, but instead only communicates to the agent how well it is

performing. Therefore, the problem given to the agent could be posed as follows: “explore

the map as quickly as possible, and avoid getting too close to other objects”. Recall that

the agent has no knowledge of how its motor outputs affect subsequent sensory inputs,

and thus has no direct knowledge of how to achieve goals such as ‘explore quickly’ and

‘avoid collisions’. What the agent is able to do is to perform different actions, record

how well those actions are rewarded, and base future decisions on previous reward. This

is the goal of Q-learning and reinforcement learning in general.

Section 7.2 differentiated two kinds of RL tasks: episodic and continual. The task of

exploring a map while avoiding collisions could be implemented in either of these two

ways. In the episodic approach, an agent would explore the map until it collides with

another object, at which point the episode concludes and the agent is moved to another

position on the map to begin a subsequent episode. In the continual approach, an agent

would continuously explore the map, occasionally colliding with obstacles, but after a

collision would continue exploring without the simulation being restarted. While the task

of collision avoidance has been implemented in the episodic sense with success [49], it was

decided to use a continual approach, as this represents the more feasible physical reality.

That is, if the task were to be moved from the simulated domain to physical robots,

it would likely be desirable that these robots could learn throughout their ‘lifetime’, as

opposed to being monitored and their learning restarted each time a collision occurs.

These approaches represent on-line and off-line learning, respectively.

Section 7.4 discussed the dilemma of exploration and exploitation, or how agents should

decide between selecting actions known to provide good return (accumulated future re-
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ward), as opposed to trying other actions whose return is unknown. Agents’ propensity

to explore the state-action space is described by variable T when using a Boltzmann prob-

ability distribution to decide the probability of selecting exploratory versus exploitative

actions. For this task, the approach was taken of starting each agent with an initial T

value, and having agents decrease their T values at an exponential rate as the simulation

progressed. Figure 7.3 on page 88 shows that the probability of selecting the most opti-

mal action becomes asymptotically close to 1 (certainty) for some small, positive value

of T which will be denoted Tc. It is therefore not necessary to reduce T past Tc, as the

agent’s behaviour will be near-identical. T can therefore be expressed as a function of

simulation time, in the form

Tt = e−βt + Tc (8.1)

for some positive β. However, since agents are required to update their T value at each

time step, and they have no notion of a global time variable t, it should be possible for

them to update T based on its value alone. Thus, differentiating,

dT

dt
= −βe−βt . (8.2)

The corresponding update rule for a single time step is of the form

Tt+1 = Tt +
dT

dt
|t×1 .

Substituting (8.2),

Tt+1 = Tt − βe−βt .

And finally, using the definition of T from (8.1),

Tt+1 = Tt − β(Tt − Tc) . (8.3)

Therefore, at each time step, agents need only apply the update rule in equation 8.3, and

their T value will follow the same exponential trajectory regardless of its initial value.

It is clear from the form of equation 8.1 that smaller values of β will provide slower

convergence to Tc. This fact was used in simulations and will be discussed in the results

section to follow.

Section 7.3.2 discussed various methods of encoding the state-action space, depending on

whether the states and actions are considered discrete or continuous. In this task, both

states and actions are continuous, but the decision was taken to discretise the action

space, to simplify and expedite agent learning. The particular discretisation used is
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described in the next section.

The method for approximating Q was to use a separate neural network for each discrete

action. The input to each network is the state s, and the output is the corresponding

Q-value for the state-action pair. The network architecture used had a single hidden

layer with hyperbolic tangent activation functions, with the output layer having linear

activation functions, similar in architecture to Figure 6.1 on page 72. It was necessary to

use linear functions on the output nodes, because such functions are capable of producing

output of any magnitude, as opposed to the hyperbolic tangent, which is only capable of

producing output between -1 and 1. The reason output of any magnitude was required

is that Q does not necessarily lie within a bounded range. This will be discussed further

in the next section.

The number of nodes in the input layer was equal to the number of sensors. The number

of hidden nodes was in all cases double the number of input nodes, which was found

to provide the networks with sufficient convergent behaviour. A single output node was

used, corresponding to the Q value of the state-action pair. Updating of the neural

network was performed by the back-propagation of error method detailed in Chapter 6.

8.2 Reward Function

The goal of the reward function in RL is to communicate to the agent how beneficial its

behaviour is in the context of a given task. The two goals of this task are for (1) agents

to explore the map as quickly as possible and (2) avoid collisions while doing so. Since

the reward function r(s, a) takes as arguments both the environmental state (s) and the

corresponding action chosen by the agent (a), it is possible to reward agents either for

the state they are in, or for the actions they have selected, or both. However, the two

goals of this task are generally distinct, and it is therefore possible to decompose the

reward function into two parts, each of which is designed to elicit the two behaviours

mentioned above. Accordingly, the reward function that will be presented can be con-

sidered, under certain circumstances, “state-based”, and in other cases, “action-based”.

Note that it is entirely possible for the reward function to be based both on states and

actions simultaneously.

When the refresh() method of an agent is called by the simulator, the agent queries its

sensors’ sense() methods, which return the scalar value of the distance to the nearest

object (or -1 if no object is sensed), and a corresponding number that encodes the type

of object (0 for obstacles, 1 for agents and -1 for no object sensed). The agent assembles

all these sensor inputs into an ns × 2 matrix (where ns is the number of sensors), and

passes this matrix to the controller, which interprets it. For this task it is not necessary
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Table 8.1: Discretised action values

(-1, -1) full speed backward
(-1, 1) stationary left turn
(1, -1) stationary right turn
(1, 1) full speed forward
(-1, 0) backward right turn
(0, -1) backward left turn
(1, 0) forward right turn
(0, 1) forward left turn

to differentiate between obstacles and agents (as they should both be avoided), so the

state data passed to the reward function is a single vector of length ns consisting of the

sensor distance values.

In order to provide a limit on the speed that agents are able to rotate their wheels, the

controller was written so that the learning process only ever uses speed values between

-1 and +1, which correspond to full-speed rotation in the reverse and forward directions.

To obtain the actual motor speed, the controller multiplies the above value by a fixed

constant speed. This provides a physical maximum speed that agents are able to move,

which in the real world can prevent damage to hardware during the early stages of

learning. Action data is therefore encoded as a single vector of length 2, consisting of the

left and right motor speeds as a fraction of the maximum prescribed speed.

As has been mentioned, a discretised action space was used. The discrete action values

used are shown in Table 8.1. Initially, only the first four action values were used, but

during testing the final four were added, for reasons discussed in the next section.

To encourage collision avoidance, variable i was defined as the minimum sensor distance

value, and lower i values were given more negative reward than higher i values, below

a certain threshold, dcrit . To encourage map exploration at maximum forward speed in

a straight line, reward was assigned based on action only if i was above the threshold

value. For assigning action-based reward, two approaches were taken. The initial method

was to make the reward equal to the algebraic sum of the action vector. This would give

reward of -2 for action (-1, -1), reward of +2 for action (1, 1) (the most desirable action),

and intermediate values for other actions. However, problems were encountered with this

approach and are described in the next section, so an alternative reward structure was

created which gave maximum positive reward for action (1, 1), and maximum negative

reward for all other actions. Note that this last reward structure will only work in a

discretised action space if (1, 1) is one of the possible actions.

Recall from Section 7.3 that for Q-learning, agents are concerned with selecting actions

that maximise utility, Q. Thus the neural networks created for each discrete action value
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provide a mapping from state to Q values. It was also mentioned in Section 6.4 that

neural networks with hyperbolic tangent activation functions perform best when inputs

and outputs are generally small and centred around 0. It is therefore desirable to ensure

Q values do not become too large. From equation 7.3 on page 85, the new (learnt) Q-value

at each time step is given by

Qlearned =
[

rt+1 + γmax
a

Q(st+1, a)
]

.

Therefore, the maximum possible Q value is given by

Qmax = rmax + γQmax .

Solving for Qmax ,

Qmax =
rmax

1− γ
. (8.4)

Clearly, the maximum value of Q is a function of the maximum possible reward value

and discount factor, γ. Therefore, in order to keep Q small, r should also be bounded.

It was decided to normalise r to lie within the range −1 ≤ r ≤ 1. Then, for a discount

factor γ = 0.7, Qmax ≈ 3.3, and for γ = 0.9, Qmax ≈ 10, which is sufficiently small for

the neural networks to converge. Discount factors above 0.9 would rarely be used.

Figure 8.1 on the following page shows the reward functions used for the simulation,

after applying the above normalisation. In the “state-based” region, the chosen action

has no effect and reward is calculated solely based on distance to the nearest object.

This alone is sufficient to encourage collision avoidance. To reward exploring the map as

quickly as possible when not near obstacles, the “action-based” regions take into account

only the chosen action and not the sensory state. In case (a), the reward distribution is

well-spaced, whereas in case (b), maximum positive reward is given for action (1, 1), and

maximum negative rewarded given for any other actions.

The curve of the reward function in the “state-based” region is the natural logarithm

with the appropriate transformations. Specifically, reward function (a) is defined as

r(s, a) =







ln (qmin s+ 1)− 1 if min s < dcrit

sum(a)

2
otherwise

(8.5)

for some constant q where dcrit =
e−1
q
. q was typically chosen to give dcrit = 0.4. Note

that dcrit is the distance at which obstacles will generally be avoided, but only for agents

with γ = 0. If γ > 0, the actual distance at which obstacles are avoided will be larger.
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This will be shown in a later section.

Similarly, reward function (b) has equation

r(s, a) =







ln (qmin s+ 1)− 1 if min s < dcrit

1 if min s ≥ dcrit and a = (1, 1)

−1 otherwise

(8.6)
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Figure 8.1: Reward functions used in Q-learning collision avoidance simulation, as func-
tions of i. (a) Original function. (b) Modified function.
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8.3 Simulation Results and Discussion

Collision avoidance Q-learning simulations were run with the reward functions mentioned

above. These were performed both in the single agent and multiple agent domains

(the corresponding simulation files are QlearningSingleAgent.sim and Qlearning-

MultiAgent.sim), using the Agent9 configuration shown in Figure 4.6 (c) on page 32.

In both of these cases, agents were observed to move around the map, initially colliding

with obstacles fairly frequently. As the simulation progressed and agents gained a more

accurate mapping of state-action space to reward space, and as their T values were de-

creased, the frequency of these collisions were observed to drop sharply. All simulations

were done using the map in file original.map, shown in Figure D.1 on page 149.

The initial T value used for all agents was 1. The minimum T value used was Tc = 0.2.

Note that this value is only ever approached asymptotically. Based on empirical testing,

it was found that at this T value the frequency of collisions had become nearly 0. Two

different rates for decreasing T were used: β = 0.005 and β = 0.0001.

The other parameters affecting simulation are the Q-learning rate α, the neural network

learning rate η and the discount factor γ. For now, it will just be stated that values of

α = 0.4, η = 0.1, γ = 0.7 were used in the simulations presented below. A fuller discussion

of the effect of these parameters will follow.

In order to present the frequency of collisions in a format that is easy to analyse, the

simulator was modified to record every occurrence of a collision between an agent and

another object (either another agent or obstacle). A graph showing the frequency of

collisions for a single agent over 33 000 time steps is given in Figure 8.2 on the following

page, along with the corresponding T values as a function of time (β = 0.0001). Since

the collision history for each time step is binary (1 for a collision, 0 for none), a plot of

the raw data would make analysing trends difficult. As such, the “mean collisions” shown

for a particular time step is the mean of the collisions for the 10 closest time steps (5 on

each side).

It is clear from Figure 8.2 that the frequency of collisions, while showing some relationship

with T , also has a great deal of random noise present, which can be attributed to local

conditions such as the starting position of the agent and also its position on the map at any

given time. In order to exclude such effects, a simulation was performed using 15 agents on

the same map, all simultaneously learning collision avoidance. Following the simulation,

post-processing was performed to average the collision history of all agents, and also

smooth the data using a central moving average of total length 1000 to minimise the effects

of random noise. The simulation output can be found in file QlearningMultiAgent.sim,

and a graph of collision frequency and T as a function of simulation time is shown in
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Figure 8.2: Mean number of collisions per time step, and propensity to explore map (T )
for a simulation of a single agent using Q-learning to learn collision avoidance, β = 0.0001.

Figure 8.3 on the next page (again with β = 0.0001).

Evident from Figure 8.3 is a clear, positive correlation between T and the frequency of

collisions. When T is near the minimum value of Tc, the collision frequency goes down

to almost 0. This simulation was performed over 33 000 time steps, which is a relatively

larger number compared to the other simulations in this project. Such a large number was

used because, for β = 0.0001, it takes approximately that amount of time for T reach 95%

of Tc. In order to determine the effect of T on the learnt behaviour, a similar simulation

was performed, again using 15 agents on the same map, this time with β = 0.005. The

results are shown in Figure 8.4 on page 99.

Figure 8.4 clearly demonstrates the effect of decreasing T too quickly: when agents have

not had a sufficient chance to fully explore the state-action space, there will be certain

sensory states for which they have not previously found the optimal action. When agents

encounter such states, they will select the action they believe to be best, based on their

incomplete approximation of Q. It is the actions taken in these states that correspond to

the high frequency of collisions observed initially. Despite this, the agents represented in

Figure 8.4 still eventually learn to avoid almost all collisions. Thus, the value of T does

not affect an agent’s rate of learning directly, but rather changes how likely the agent is

to choose actions for state-action pairs that have previously been unexplored.
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Figure 8.3: Mean number of collisions per agent per time step, and propensity to explore
map (T ) for a simulation of 15 agents using Q-learning to learn collision avoidance. Data
is smoothed with a central moving average of total length 1001, β = 0.0001.

The effect of the rate at which T is decreased can be better understood by considering the

total number of collisions as a function of simulation time, which is shown in Figure 8.5

on page 100. As can be seen, when T is decreased rapidly, the rate of collisions is higher

initially, since agents have an incomplete approximation of Q, but are nevertheless using

this approximation as if it were accurate. This results in a high rate of collision initially.

However, agents which decrease T at a slower rate do not experience the same high rate of

collision initially, but do experience a greater number of collisions overall. In both cases,

the total number of collisions appear to plateau, which corresponds to agents having

made an accurate internal mapping of state-action space to Q-values. This demonstrates

the assertion made in the previous paragraph, namely that T does not affect an agent’s

ability to learn, but rather its tendency to explore new state-action pairs, which will

indirectly affect its rate of learning optimal behaviour.

An important result of the foregoing analysis is that T is not a variable which can be

optimised: it is, inherently, a choice. The designer (or agent, as the case may be) can

choose between enduring a greater total number of collisions overall but fewer in the initial

stages, or enduring more collisions at the start of learning but fewer overall. The rate

of decreasing T is thus an indirect measure of the importance of short-term versus long-
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Figure 8.4: Mean number of collisions per agent per time step, and propensity to explore
map (T ) for a simulation of 15 agents using Q-learning to learn collision avoidance. Data
is smoothed with a central moving average of total length 1001, β = 0.005.

term success. The very need to make the choice between these two mutually exclusive

objectives encapsulates the exploration-exploitation dilemma.

Having discussed the effects of T on the learnt behaviour, attention will now be paid

to some problems and anomalies that were observed during the simulations. Initially,

the discrete action values used were the first four in Table 8.1, i.e. they did not include

translational turns. This set of action values was thought to be sufficient for agents to

explore the map and avoid obstacles. The reward function used was that shown in Figure

8.1 (a).

When using this reward function, agents would not explore the map in a straight line at

full speed (as was desired), but would rather oscillate in all directions, with the result

over a long period of time being a net forward movement. This was found to occur

because the reward associated with actions in the “action-based” region of the reward

function was fairly equally distributed. In other words, not enough emphasis was placed

on moving forward in a straight line, namely action (1, 1), resulting in similar Q values

for all actions. The consequence is that agents would perform the actions with a far

greater frequency than was desired, leading to the behaviour just described.
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Figure 8.5: Total collisions per agent (average over 15 agents) as a function of simulation
time for two different rates of decreasing T , β = 0.005 and β = 0.0001. Data is smoothed
with a central moving average of total length 1001.

To solve this, the reward function was changed to that shown in Figure 8.1 (b), where a

far greater emphasis is placed on action (1, 1). This was found to be highly effective at

causing agents to move directly forward when not near obstacles.

As was mentioned, the first four action values shown in Table 8.1 were those used initially,

and were thought to be sufficient for the task. However, an oscillatory behaviour was

observed, as shown in Figure 8.6 (a) on page 101. If an agent became positioned such

that it had an obstacle on its left or right side, it would simply oscillate back and forth,

as shown in the figure.

After some testing it was discovered that, in the position shown, selecting any of the

available actions would cause the agent to receive the same reward, a consequence of

the agent’s sensory configuration. It is clear that if the agent were to move forward or

backward in this position, the value of i (its minimum sensor reading) would not change.

Additionally, if the agent were to perform a stationary turn to the left or right, i would

again not change. Therefore, in this state all actions appeared to have equal reward.

Because the agent was not able to move out of this state into a different state, the Q

value for all actions in the state shown would become equal. This means that the agent
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Figure 8.6: Oscillatory agent behaviours exhibited while learning collision avoidance.

would pursue all available actions in the current state, resulting in an oscillatory motion.

To solve this problem, the set of discrete action values was modified to include transla-

tional turns (i.e. forward turns and backward turns), shown in the last four rows of Table

8.1. Allowing agents to move forward while simultaneously turning would allow them

to increase i marginally, thus resulting in a larger (less negative) reward. This solution

proved to be effective, and after implementation the same class of oscillatory behaviour

was not observed.

However, another class of oscillatory motion was observed, shown in Figure 8.6 (b).

In certain cases, if an agent were to approach an obstacle at a roughly 90◦ angle, it

would occasionally oscillate back and forth, at a mean distance from the obstacle equal

denoted by dm . It was found that this generally occurred with agents having a relatively

low T value. The behaviour occurs because of a discontinuity in Q∗ when i = dm .

Recall that agents attempt to approximate the function Q∗, which is unknown to them

and represents the true utility of any state-action pair. The discontinuity in Q∗ arises

precisely because of the discontinuity in the reward function at i = dcrit . It is easier to

analyse the reward function than the utility function Q∗, so the following analysis explains

how the discontinuity in r leads to the oscillatory motion seen. However, since agents

are only concerned with maximising Q values, it is actually the discontinuity in Q∗ (or

more precisely, agents’ approximations thereof) that results in the behaviour observed.

Therefore, the following analysis is exactly true in the case of γ = 0, when Q∗ ≡ r, but

true in principle for all cases. The relationship between Q∗ and r will be further explored

in the next section.

Consider the reward function graph shown in Figure 8.1 (b). If an agent’s i value is equal

to dcrit (on the left side of the “action-based” region), the action which will generate

greatest reward is moving forward, i.e. action (1, 1). Taking this action will place the
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agent in the “state-based” region, at some i value 0 < i < dcrit . However, the agent will

receive negative reward for being in this state and will have previously determined that

the best action to select in this state is an action that will increase i, i.e. any action with

a backward component. Selecting such an action will bring the agent back to its initial i

value of i ≈ dcrit , allowing the process to repeat. The reason this behaviour is observed

with agents having low T values is that the agent is more inclined to select the action it

has previously determined to give the greatest utility for the current state. Agents with

higher T values may undergo this oscillatory motion for a short period, but the agent is

bound to eventually select an action it considers sub-optimal (such as a turn), which will

move it out of this deadlock position.

This problem occurs as a direct result of the reward function used. Because in the

“action-based” region there is a high reward associated with action (1, 1) and a very

low reward associated with any other action, the agent is essentially compelled to select

(1, 1). This becomes a problem when i reaches dcrit because the agent reaches a point

of deadlock, alternately moving forward and backward. This problem can be solved in

a number of ways. The simplest solution is to change the reward function so that the

reward associated with action (1, 1) in the “action-based” region is not so comparatively

high, thus allowing agents (even with low T) values to attempt other actions (such as

turning). This could be achieved by reverting to the reward structure in Figure 8.1 (a),

which was found to be an effective solution, although this would cause the previously-

mentioned problem associated with that function. Another solution could be to smooth

the reward function in the region of dcrit to eliminate the discontinuity there. Thus all

actions could have a reward of 0 at i = dcrit , with the reward gradually increasing to its

final value for each particular action.

In general, the oscillatory behaviours that have been observed are largely a consequence

of the reward function used, as well as the discretised action space. Future simulations

should certainly explore the use of continuous spaces.

A particularly interesting behaviour was observed in some agents that had learnt for a

long period of time: when approaching an object, their method of avoiding it was to

move backwards for a certain distance, then turn away and move in a different direc-

tion. Contrast this behaviour with the rule-based collision avoidance algorithm given in

Chapter 5, where agents were instructed to perform either a stationary or forward turn

when encountering an obstacle. If a forward turn is performed, agents would actually

move closer to the obstacle before turning away from it. The method learnt using RL is

arguably a more efficient way of moving away from an obstacle as quickly as possible, and

this fact highlights the benefits of using RL to develop efficient agent behaviours, rather

than having a human designer trying to decompose complex behaviours into a series of

rules.
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Figure 8.7: Relationship between utility and reward for the cases where (a) γ = 0 and
(b) 0 < γ < 1.

8.4 Effect of Learning Parameters

Thus far, the only learning parameter whose effect on the learnt behaviour that has been

discussed is T . It was seen that T expresses a choice between exploration and exploitation

and therefore cannot be optimised in an absolute sense. However, the effects of the other

learning parameters, γ, α, η, have not yet been discussed. Recall that γ and α are the

discount factor and Q-learning rate, respectively, and η is the learning rate of the neural

networks used to map s to Q for each action a.

It has already been mentioned that γ weights the utility of future rewards relative to

immediate rewards. Therefore, γ = 0 corresponds to Q∗ ≡ r, leading to a highly “oppor-

tunistic” agent which only considers immediate reward and not long-term returns [2]. In

the context of this collision avoidance problem, γ will control the distance from obstacles

at which agents begin to avoid these obstacles, for agents whose approximation of Q

has become sufficiently close to Q∗. This can be seen in the above simulations, where

dcrit ≈ 0.4, but the distance at which agents avoid obstacles is much larger (for a sense of

scale, the agents had a diameter of 10 units). It was observed that changing the value of

γ directly controlled the distance at which agents avoided obstacles. Denote this distance

by dm . The relationship between Q and r, for a simplified one-dimensional case, is shown

in Figure 8.7.

As can be seen, γ controls to what extent agents anticipate the negative reward that is

to follow if they approach obstacles. The precise value of dm will be a function of dcrit
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and γ, with dm →∞ as γ → 1.

The effects of the other two parameters are not as pronounced, as they are simply learning

rates. The neural network learning rate, η, will control how rapidly the network will

update its approximation of the mapping s → Q, as well as the convergence properties

of the network. The Q-learning rate, α, will determine how much an agent discards old

knowledge and accepts new knowledge about Q∗.

It was mentioned earlier that variable T is a choice and cannot be optimised in a global

sense. The same can be said for γ. Despite this, T and γ could certainly be optimised with

respect to some goal, such as ‘minimise the total number of collisions in the first 1000 time

steps’. This could either be implemented in an offline approach, where simulations are

repeated for different values of T, γ, and some optimisation approach used to find the best

values. Alternatively, agents could be pre-programmed with the goal that their learning

needs to achieve, and continually adjust the values of these parameters to approach this

goal. It should be noted, however, that it is not entirely possible to escape the use of pre-

defined constants, since even the process just described would require the specification of

the rate at which new information is added and old information discarded.

8.5 Final Remarks

The reason for presenting the specific anomalies encountered during these simulations was

not that they are believed to be fundamental or particularly significant. To the contrary,

they are largely a consequence of the specific reward function that was employed. They

have been included here to impart to the reader an appreciation of the difficulties that

can be encountered with reinforcement learning, and artificial intelligence in general.

While the overarching reason for using AI approaches in mobile robotics is to avoid the

problems associated with a designer prescribing and proscribing the specific actions that

are thought to lead to a particular outcome, it is equally true that the design of suitable

reward functions is certainly not trivial. Indeed, it has been noted that the task of

writing reward functions that elicit desired behaviour does not make the designer’s work

any easier, but rather changes the nature of this work [51].

Nevertheless, it is the author’s opinion that AI techniques constitute a highly useful

tool-set in the design of robotic agent controllers. If the goals of the task can be ad-

equately specified (by creation of a suitable reward function), then it is almost certain

that intelligent robotic agents will find an optimal or near-optimal approach to solving

the problem.
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Chapter 9

Swarm Behaviour In Distributed

Resource Allocation

Thus far in this report it has been shown how the simulator can be used to model

emergent swarm behaviour when agents are following simple rules, as well as how artificial

intelligence can be used to make robotic agents learn novel and efficient ways ta complete

a given task, which are often contrary (and superior) to behaviour-based approaches. The

former case – using simple rules to elicit complex behaviour – demonstrates the mechanics

of how swarms are able to form. However, the reasons why swarm behaviour emerges

have not yet been addressed in the context of simulation. The latter is the goal of this

chapter, which will present a highly simplified model of a real-world task which requires

agent cooperation.

The chapter begins by motivating the need for a simple task to elicit cooperative be-

haviour in agents. Such a task is proposed together with the corresponding simulation

model. The results of a simple investigation into two different behaviour-based approaches

to the task are presented, followed by recommendations for future work.

9.1 Introduction

In Section 3.1 on page 14, a number of reasons were given to explain why swarm behaviour

emerges in biological agents. Briefly, these reasons were to avoid predators, improve

access to resources, increase locomotion efficiency and improve social interactions. While

the last of these may not have an obvious parallel for robotic agents, the first three

do. For example, aerial military drones carrying explosive payloads designed to destroy

buildings may benefit from moving in swarms. The swarm may provide better protection

against surface-to-air missiles (predators), improved explosive damage capability when
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operating in concord (access to ‘resources’) and also reduced aerodynamic drag from

flying in formation (locomotion efficiency).

Of these three functions, the one that is simplest to implement in the simulator, and

perhaps most realistic in the context of the swarm robots described in Section 3.3, is

‘improved access to resources’. In the context of biological agents, “resource” usually

refers to a foraging source or other source of nutrition. For robotic agents, the term could

be interpreted as referring to any physical entity an agent must visit in order to complete

a given task.

In this chapter, the task under consideration is that of robotic agents extinguishing fires.

The application of this could be in a scenario, such as in a factory or warehouse, in which

specialised robots are deployed and instructed to explore the area, extinguishing any fires

if they are encountered. Due to the precise nature of the task, which will be given in the

next section, some fires will be extinguishable by a single agent acting alone, but others

will require multiple agents working together to be extinguished. This task therefore

requires that robots act cooperatively in order to achieve a common goal.

9.2 Problem Definition

The goal of this section is to define the details of the task outlined above, so that coop-

erative behaviour between agents will result in a mutually beneficial outcome. As such,

the fire-fighting model that will be developed is not intended to be completely realistic

nor directly applicable to a real fire-fighting scenario. It is rather intended as an abstract

resource allocation problem, designed to demonstrate the functional benefits of swarm

behaviour and self-organisation.

Consequently, it is necessary to create a simulated model of an actual fire-fighting envi-

ronment. The basic scenario is that agents are deployed on a map which has a number of

fire objects positioned in various locations. These objects are a new kind of map entity

introduced for this task. The model of the robotic agent has been adapted to include

a radiation sensor, which allows agents to sense the temperatures of various fires. This

sensor is positioned fore on the agent, as shown in Figure 4.6 (d) on page 32.

In order to develop a suitable model of a fire-fighting scenario, a number of qualitative

requirements of the scenario were outlined, with the goal being to subsequently trans-

late these descriptions into a mathematical model. These qualitative requirements are

presented below.

1. The extinguishing capacity required to extinguish a fire should be dependent on

the fire’s temperature and the area of the specific fire.
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2. The extinguishing capacity required to extinguish a fire should increase with the

passing of time, making it advantageous to extinguish fires earlier, rather than later.

3. The extinguishing capacity of agents at a particular fire should be additive; that

is, the rate at which a fire is extinguished should be proportional to the number of

agents extinguishing the fire.

4. Fires should reach a terminal temperature, meaning that there are no runaway fires.

5. Agents should be able to extinguish fires at a constant rate.

6. An agent can only extinguish one fire at a given time.

7. The temperature of agents which are extinguishing a particular fire should increase

as time goes by, and also increase at a rate commensurate with the temperature of

the fire, as well as the area of the fire.

8. For the sake of simplicity, only agents which are close enough to a fire to extinguish

it will absorb heat from that fire.

9. When an agent is extinguishing a fire and its temperature exceeds a particular

threshold value, it should leave the fire to avoid physical damage.

10. Agents which have a temperature above a certain baseline should release heat to

the environment, thus cooling down and allowing them to return to extinguish fires.

This can be assumed to occur at a constant rate.

Based on the above requirements, mathematical modelling was performed to produce a

set of equations governing the behaviour of the system. Detailed calculations for this

model are given in Appendix B on page 141. Needless to say, this is a highly simplified

model of a complex physical phenomenon. It should, however, be reiterated that the goal

is not to perform an accurate simulation of the physics and thermodynamics inherent in

fire-fighting, but rather to analyse the individual and group behaviours that are present

in a task where agents need to work cooperatively but also ensure self-preservation.

The “resource” referred to in the title of this chapter is the extinguishing capacity of

each agent. Since each agent can only extinguish one fire at a time, it is up to the agent

to decide where it will direct its fire-extinguishing resource. A number of interesting

consequences of this fact will be seen to emerge.
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9.3 Simulation Setup

A number of agents are randomly placed on a map containing several fires. The map

used for this simulation is shown in Figure D.4 on page 150. To simplify the simulation,

the only internal objects in this map are fires, not obstacles, although it is entirely

possible to use a combination of the two. Fires are always circular in shape, and drawn

so that their apparent area is proportional to their ‘area’ property (which determines

various characteristics of the fire, as mentioned above). The temperature of the fire is

indicated by its colour: black for very low, red for maximum temperature and grey for

an extinguished fire.

The assumption is made that agents’ IR proximity sensors are able to detect the presence

of fires, but not their temperatures. The radiation sensor mounted on the front of the

agent is able to detect the temperature of a fire.

Agents are given a three-layer subsumption-based control algorithm, with the base layer

being collision avoidance. The next behaviour is to approach a fire if one is detected by

the IR sensors, provided that the agent’s temperature is below a certain threshold, and

begin extinguishing it until the agent’s temperature reaches an upper threshold. The

third subsumption layer is map exploration in a straight line.

Two different approaches were trialled when agents leave fires: turning away from the fire

and going in search of another fire, or moving backwards until far enough away from the

fire not to absorb its heat, and remaining stationary. In the latter case, when an agent’s

temperature has decreased sufficiently for it to resume fire-fighting, it will begin moving

forward and approach the same fire at which it was previously. These two approaches

will be referred to as ‘strategy A’ and ‘strategy B’, respectively.

Like the rest of the simulations detailed in this report, agents are not able to explicitly

communicate with one another, nor do they have any knowledge of their environment

beyond what their sensors detect.

9.4 Simulation Results and Discussion

Simulations were run for the two control strategies described above. The behaviour exhib-

ited by agents, while a direct result of the particular model that was used, is nonetheless

interesting. As expected, agents survey the map for fires, and when their sensors detect

a fire, move towards it and begin extinguishing it. The constants of the fire model were

chosen such that a single agent would not be able to extinguish a fire alone, but only

with the assistance of other agents. The number of agents required would depend on
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agent approaches fire attempts to extinguish fire retreats from fire

first agent reapproaches
second agent arrives

agents cooperatively
extinguish fire

agents move away
from extinguished fire

Figure 9.1: A series of frames depicting cooperative fire-fighting behaviour.

the temperature and area of the fire, the temperature of each agent, the control strategy

being used, as well as the relative timing of the agents’ arrivals at a particular fire.

Figure 9.1 depicts a typical scenario observed using strategy B. An agent approaches a

fire and attempts to extinguish the fire. During the agent’s time at the fire, its own

temperature increases to a point where its damage-avoidance mechanism activates, and

the agent is compelled to leave the fire, as shown. After having expelled enough heat to

resume the task of fire-fighting, the agent moves forward and begins extinguishing the

same fire. Coincidentally, a second agent arrives at the fire at approximately the same

time. With both agents extinguishing the fire, its temperature drops more rapidly. Since

the heat transferred to agents is proportional to fire temperature, this means both agents

are able to stay at the fire longer than if only one agent were present. Consequently, the

agents extinguish the fire and continue exploring the map.

It is interesting to note that neither of the agents extinguishing the fire are aware of the

other’s presence. Each agent is simply attempting to perform its assigned task, all the

while ensuring that it does not suffer excessive damage to itself. Thus it could be said

that the agents are implicitly cooperating, because neither agent has recruited the help

of the other.

A similar, but not identical, behaviour can be seen in ants attempting to cooperatively

transport prey. Typically, an ant will discover a prey and attempt to move it by lifting

or dragging. If unable to move the prey immediately, the ant will spend a period of time
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attempting different angles and lifting methods. If other ants should arrive during this

period, they will all attempt to move the prey. If the combined effort is sufficient, the

ants will transport the prey to the nest, possibly unaware of the assistance of the other

ants [3] (this is only true if the prey is dragged, rather than lifted). Where ant behaviour

differs from the fire-fighting agents is that, if a single ant is unsuccessful after a long

period of time, it will travel back to the nest to recruit more ants, while leaving a trail

of pheromones to assist itself and other ants in finding the prey.

Having observed the above implicit cooperation between fire-fighting agents using strategy

B, it is natural to ask whether strategy A might not be more effective. When using

strategy A, an agent will leave a particular fire if it is not successful in extinguishing it.

This approach could have the advantage that agents do not waste time attempting to

extinguish fires beyond their individual capabilities, but instead move around the map

and possibly find smaller fires they are able to extinguish alone. An obvious disadvantage,

however, is that for larger fires it is far less likely that enough agents will happen upon

the fire at the same time to cooperatively extinguish it. It is not clear a priori which

effect will dominate, making a clear case for simulation.

Parallels can be drawn between robotic agents following strategy A and biological agents.

For example, a predator on the hunt for prey may give chase to a potential prey, but if

this potential prey proves to be elusive, the predator may instead opt to abandon that

particular prey and hunt for another.

To perform a simulation to establish which strategy may be better, it is necessary to

monitor the state of fires as the simulation progresses. However, a more robust analytical

technique is required than simply observing the simulation as it progresses. To implement

such a technique, the simulator was modified to record the history of each fire at each

time step (or any user-defined interval of time steps). Both the number of agents at each

fire is recorded, as well as the temperature of the fire. These results are then exported in

matrix form, ready for subsequent analysis.

The graphs that are presented show the number of agents extinguishing each of the 7 fires

on the map, as the simulation progresses. If a fire has been extinguished, it is shown as

having -1 agents present, to distinguish it from fires which are active, but have no agents

extinguishing them. The results of the simulations for agents using strategies A and B

are shown in Figures 9.2 and 9.3, respectively.

As can be seen in the graphs for strategy A, all of the fires were extinguished, except for

the one represented by the second graph, which corresponds to the large central fire (see

map in Figure D.4 on page 150). It is also clear from this second graph that the fire never

had more than one agent attempting to extinguish it at one particular time. This is due

to each agent leaving the fire as soon as it had reached its threshold H value. Therefore,
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Figure 9.2: Fire history graphs for all fires in a fire-fighting simulation, showing the
number of agents at each fire as a function of simulation time, for agents using strategy
A.
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Figure 9.3: Fire history graphs for all fires in a fire-fighting simulation, showing the
number of agents at each fire as a function of simulation time, for agents using strategy
B.
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in the case of strategy A, whether a fire will be extinguished by multiple agents depends

on those agents arriving at the fire at very similar times, which is highly unlikely on a

large map.

Contrast this behaviour with what is seen in Figure 9.3, with strategy B. The physical

constants in the model were kept identical between the two simulations, meaning that

agents stay at a fire for exactly the same length of time whether using strategy A or B.

However, the benefit of strategy B is marked: by agents not leaving the fire when they are

unable to extinguish it alone, they allow for the possibility that other agents will come

to the same fire. When this happens, they are able to implicitly cooperate with each

other, thus achieving their common goal, but without even knowledge of the presence

of other agents. This closely resembles the cooperative transport behaviour in ants that

was previously discussed.

The simulations referred to in this section can be found in files fireFighting1.sim and

fireFighting2.sim.

9.5 Final Remarks

It is not intended that the simulations presented in this chapter should convince the reader

of the superiority of one control strategy over the other. In any case, the results obtained

are likely only applicable to this artificial model of distributed resource allocation. What is

significant about the work presented here is that it broaches, in the context of a simulation,

the reason that swarm behaviour might occur among autonomous agents. All of the

robotic simulators presented in Section 4.2, as well as most swarm simulator software

packages, focus on reproducing, on a superficial level, the patterns of swarm behaviour

observed in nature. Perhaps a more fundamental and powerful approach to simulating

swarms is that which has been presented in this chapter, namely to elicit swarm behaviour

by creating conditions which might cause intelligent autonomous agents to decide to form

close geometrical relationships with their peers, for the purpose of collectively achieving

individual goals.

In this preliminary investigation, map exploration was implemented by means of mov-

ing in a straight line, in the same way as the simulations of Chapter 5. It was also

observed that agents spent a large amount of time exploring the map without finding

fires, even if there were active fires. It would therefore greatly improve the collective’s

fire-fighting ability if individual agents could find fires faster. However, this would seem

to be unachievable in the absence of communication.

It was mentioned in Section 4.4 that agents without explicit communication can use their
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physical location in the environment as a form of implicit communication. Thus, it might

be the case that agents which tend to follow other agents end up finding fires faster

than those simply exploring in a straight line. Alternatively, some other heuristic not

yet considered may prove to be even more effective. This type of problem is extremely

well-suited to an artificial intelligence approach because the goal can be clearly defined,

even if the steps to achieve it are unknown. Thus it is envisaged that agents could be

given large positive rewards for happening upon fires, and small negative reward for every

time step for which they are not at a fire (to encourage fast fire-finding behaviour). In

this way, a reinforcement learning-based control structure could be used to make agents

learn the actions best suited to finding fires.

It should be noted that the current implementation of RL in the simulator does not differ-

entiate between obstacles and agents, as this was not necessary for the collision avoidance

task previously presented. Therefore, if it is desirable that some kind of neighbour-based

behaviour should emerge, the state space encoding would need to be altered to accom-

modate for sensors’ values as well as object types.

Regrettably, there was insufficient time during this project to implement such an encoding

and further explore the ideas mentioned above. However, the problem of distributed

fire-fighting presented here, while perhaps somewhat artificial, is well-suited to eliciting

swarm behaviour. The programmatic groundwork has been laid for such simulation to

take place, and it is recommended that future work be undertaken in this domain.
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Chapter 10

Critical Assessment

The purpose of this chapter is to review the work that has been undertaken in each

section of the project, evaluate it against the objectives of the project, and make recom-

mendations for related future work that might be undertaken.

10.1 Simulator

The simulator that was created is capable of modelling interactions between individual

agents and their environment, as well as the behaviour of large groups of such agents

(i.e. swarms). Therefore, the project objective of building such a simulator, described by

item 1 on page 12 has been met. Furthermore, a number of additional features have been

programmed into the simulator, beyond the stated requirements. These features were

incorporated to make the software easier to use, more scalable and highly configurable.

They include

• the separation of core simulation from visualisation;

• automatic regulation of visualisation playback speed;

• the creation and importation of custom maps;

• built-in analysis of certain common kinds of simulation, and subsequent exportation

of data to other formats;

• the modular nature of the software in general, which permits configuration of new

agent representations, sensory configurations and world objects;

• a simple graphical user interface; and
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• the ability to enqueue serial simulations by the use of job files.

Despite the above features, there are nevertheless a number of areas in which the simulator

might be improved or extended. These could include

• having a command line interface (CLI) so that simulation jobs can be executed

from shell scripts or scheduled in advance;

• a more diverse array of built-in analysis tools;

• the ability to take screen shots natively inside the simulator, either on demand or

at specific intervals;

• conversion of output .sim files into other formats, such as AVI or animated SVG;

• modification of the physics engine to permit cooperative transport tasks such as

dragging, lifting and pushing;

• the ability to abort a simulation that is in progress, while retaining any data saved

thus far;

• implementation of inter-agent communication models;

• built-in ability to parallelise computation;

• adaptation of the physics engine to allow arbitrary polygonal shapes; and

• a more efficient contact model that makes use of spatial partitioning.

10.2 Behaviour-based Control

Chapter 5 details the behaviour-based approach that was used to give agents simple rules

to follow, which result in complex emergent group behaviours. Therefore, the project

objective mentioned in item 2 on page 12, which was to “simulate swarm behaviour by

giving agents simple rules to follow”, has been met.

Suggestions for improvements and future work in this domain include

• solving the problem of leader determination when two agents approach head-on in

a chain formation simulation;

• developing an algorithm that allows agents to perform velocity matching;
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• investigating the effects of different agent locomotion and sensory configurations on

the observed behaviour; and

• attempting to simulate other swarm behaviours, such as flocking, cooperative trans-

port or perimeter formation.

10.3 Reinforcement Learning

The final project objective, given in item 3 on page 12, was to “program a reinforcement

learning algorithm that is able to interact with the simulator and produce AI behaviour

in each simulated agent”. Such an algorithm was created for the behaviour of collision

avoidance and is detailed in Chapter 7. Therefore, this project objective has been met.

Since artificial intelligence is a broad field, there are a number of possible points of

departure for future work and investigation, which could include

• implementing different learning approaches, such as evolutionary algorithms or Heb-

bian learning;

• using continous state-action spaces as opposed to the discretised model that was

employed;

• modifying the state-action space encoding to include the type of each object de-

tected by sensors, which would be required for neighbour-based learning;

• investigating alternative reward functions for the collision avoidance task; and

• having agents which are aware of their own learning, and thus able to self-adjust

the parameters thereof.

10.4 Distributed Resource Allocation

This task was pursued as a purely exploratory endeavour and has no corresponding

‘project objective’. Despite this, a substantial amount of work was done in creating a

model that can be used to elicit swarm behaviour in intelligent agents from first prin-

ciples, as opposed to using a rule-based approach to merely emulate such behaviour.

Therefore, AI techniques would be extremely well-suited to this problem. Topics for

further investigation could include

• implementing communication between agents to observe the effect on group efficacy;
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• a reinforcement learning algorithm to reward agents for finding fires, thus possibly

causing swarm behaviour; and

• a reinforcement learning algorithm to reward agents for extinguishing fires, which

could reveal problem-solving heuristics that are anticipated, such as agents first

congregating before extinguishing a fire.
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Chapter 11

Conclusions

The phenomenon of swarm behaviour is remarkable: a large number of individual agents,

each acting in the interest of their own self-preservation, self-organising into swarms that

are able to cooperatively realise individual and group goals.

This report has documented, in some detail, the design, development and applications of

a computer program to simulate swarm behaviour.

The notion of swarm behaviour was introduced in Chapter 3 with a survey of its inter-

pretations in nature and robotics. Some of the natural patterns of swarms that can be

observed were mentioned.

Attention was then paid to the development of the computer simulator. A survey of

existing simulators and best practices in the field was presented in order to inform and

justify the design decisions that were made. Following this, the physical model that

was used in the simulator was explained in depth, with reference to detailed calculations

contained in an appendix. Descriptions of the details of the specific implementation were

given, as well as comprehensive performance testing and analysis.

Having explained the development of the simulator, the notion of behaviour-based control

was then introduced, with descriptions of the various behaviours that were implemented.

The results of simulations using these behaviours were presented and analysed, describing

the complex emergent behaviour that was seen to result from the application of simple

rules on a large scale.

A survey of relevant literature on artificial intelligence was then presented. Neural net-

works and reinforcement learning algorithms were discussed in depth, in order to lay the

groundwork for the AI simulations that followed.

The reinforcement learning algorithm that was developed during the project was then

presented and described in detail. The specifics of its implementation were explained
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and related back to their theoretical foundations in the foregoing chapters. The results

of the corresponding simulations were then presented, with an analysis of the numerous

anomalies and unexpected behaviours that were observed. In particular, it was shown

how the use of AI techniques does not necessarily make the job of the designer any easier,

but rather changes the nature of the work that is required. In spite of this, reasons were

given for why AI approaches to agent models can often be superior to the behaviour-based

equivalents.

In the final simulation-based chapter, the distributed resource allocation problem of mul-

tiple fire-fighting agents was proposed and described, with the goal being to create a

scenario where swarm behaviour might emerge out of requirement, as opposed to pre-

scribing rules that mechanistically result in its occurrence. Some simple simulations were

conducted to compare two rule-based cooperative approaches, with the caveat that the

simulation results were likely specific to the nature of the problem, and did not speak to

a more fundamental cause. The use of an AI approach to elicit self-organised cooperation

for the completion of the task was contemplated, despite there having not been time to

implement it programmatically.

Finally, the work done in the project was reviewed against the project objectives and

critically assessed. A number of recommendations were made, the most important of

which were to optimise the simulator’s contact model using spatial partitioning, investi-

gate different learning approaches (such as evolutionary algorithms) and to implement a

state-action space encoding capable of differentiating between agents and obstacles.

It is hoped that the reader is left with an appreciation of the prevalence of swarm be-

haviour across multiple domains, as well as an understanding of the important role played

by computer simulation in modelling these complex interactions.
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Appendix A

Physics Modelling and Calculations

The kinematics and kinetics employed in the simulator are relatively simple. The high-

fidelity physics engine that was initially implemented made use of conservation of mo-

mentum and coefficients of restitution to resolve the kinetics of collisions. However, in the

lower-fidelity engine that was eventually implemented, the collision model was replaced

by one which, although based less on the classical principles of physics, still provides

behaviour which is sufficiently realistic.

This appendix first gives a technical treatment of the rigid body kinematics of differential

wheel locomotion, before describing the contact model that was employed. The method

of sensor operation is explained, followed by a brief note on the coordinate systems used

in the simulator.

A.1 Rigid Body Kinematics

The physics engine uses a simplified kinematic model. Essentially, all agents are consid-

ered rigid bodies, with their velocities determined by the linear velocity of their wheels

at the outer radius. The following assumptions are made:

1. Both wheels are of the same diameter and have the same coefficient of friction with

the ground.

2. The agent is able to rapidly and independently control motor speeds to effect trans-

lation and rotation.

3. The wheels may slip for one of two reasons. Either the agent is attempting to push

into another object, or random slip is being applied to simulate unpredictable motor

behaviour (see Section 4.3.2.2 on page 34).
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Figure A.1: Agent velocity vector diagram overlaid on agent drawing.

4. Both wheels are aligned to be parallel and coaxial with each other.

Denote the left and right wheel velocities vL, vR, respectively. These variables refer to

the no-slip speed of the wheels; the actual motor speeds (mL,mR) may be higher. For

example, if the left wheel is slipping, mL would be some non-zero value known to the

agent, whereas vL = 0 and is unknown to the agent. Therefore, the agent does not know

directly whether it is moving or not; it can only know whether its motors are active.

Consider the entire agent to be a single rigid body with velocities relative to the ground of

vL, vR as shown in Figure A.1. It is then possible to determine the agent’s instantaneous

centre of zero velocity (or just instantaneous centre for brevity), denoted by C. Let O

be the midpoint of the line joining the two wheels’ centres, as shown in the figure.

Since the agent is a rigid body, it is possible to write

vR = (|| ~CO||+ r)ω vL = (|| ~CO|| − r)ω (A.1)

where ω is the rotational velocity of the agent, positive in the counter-clockwise sense.

Solving for ω,

ω =
vR − vL

2r
(A.2)
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Similarly, the velocity of point O, vO is given by

vO = || ~CO||ω (A.3)

Substituting (A.1) into (A.3)

vO =
vR + vL

2
(A.4)

Equations A.2 and A.4 describe the rotational and translational velocities of the agent.

Because the assumption has been made that the wheels are coaxial and parallel, point O

is coincident with the centre of the circle which describes the agent. At each time step,

the position of this centre is updated according to equation A.4, and the orientation of the

agent is updated according to eqaution A.2. This operation is performed in the refresh()

method of the AgentCir superclass in file agents.py, and is therefore inherited by all

agent classes based on the AgentCir superclass.

A few comments on these results are in order. Clearly, for the agent to move in a straight

line, vL = vR. This fact is used by all the control strategies implemented in this project,

to either force or encourage (in the case of reinforcement learning) the agent to move

in a straight line. Positive values of vL, vR result in forward motion, negative values

result in backward motion. If vL 6= vR, the agent will turn, with the rate of turn (ω)

being proportional to the disparity in vL and vR. In the extreme case where vL = −vR,
the agent will execute a stationary turn (i.e. no translational motion). This may be

useful in a number of cases. For example, in collision avoidance algorithms where a turn

needs to be made without the possibility of colliding while making said turn. Conversely,

‘translational turns’ are turns when the agent’s centre (point O in Figure A.1) is not

stationary, which can be useful in avoiding deadlock (see discussion in Section 5.2.2 on

page 56).

Define the fractional wheel slip on each wheel to be

wsL =
mL − vL

mL

and wsR =
mR − vR

mR

(A.5)

where 0 indicates no slip and 1 indicates full slip. The value of ws is not known to the

agent; it is determined by the physics engine based on whether the agent is attempting to

travel into another object, or based on random slip. The values of vL, vR are calculated

once wsL,wsR are known.
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A.2 Contact Model

As mentioned in Section 4.3.3 on page 35, the simulator uses a simplified collision model

and a relatively expensive contact detection algorithm. For the purposes of this discus-

sion, ‘world’ refers to the collection of all objects (obstacles, agents, fires) in the simulated

environment at any given time.

As described in Section 4.6, at each time step the world loop first refreshes all objects in

the world, which process involves, inter alia, calculating the new positions and orientations

of all moving objects. Following this refresh, the contact detection algorithm is invoked

pair-wise on all objects in the world. If an overlap of two objects is detected, the collision

algorithm is applied to those two objects. The contact detection and collision algorithms

described below are both contained in file contactFunc.py.

A.2.1 Contact Detection

The contact detection algorithm takes, as its input, two world objects. These two objects

will be checked to see if they have any overlapping areas. At present, the contact model

used in the simulator is capable of checking rectangle-circle and circle-circle pairs, the

former case corresponding to obstacle-agent contact and the latter to both obstacle-agent

and agent-agent contact. It is certainly possible to extend the algorithm to perform

contact detection on other geometries.

The general case of two proximate circular objects is shown in Figure A.2 on the following

page. It is apparent that contact has occurred if the following inequality holds:

|| ~CACB|| < (rA + rB) (A.6)

The case of contact between a rectangular and circular object is slightly more complicated.

The general case is shown in Figure A.2.1 on the next page. Conceptually, a frame with

rounded corners can be envisaged around the rectangle (shaded region in the figure).

This frame has width equal to the radius of the circular object. If the circular object’s

centre lies anywhere within this frame, contact has occurred, as is the case with circle

B. In order to check whether the circular object’s centre lies within this frame, a further

conceptual construct is introduced: a bounding box, as shown in the figure.

Initially, the circle’s centre is compared against the coordinates of the bounding box. If

it lies within the bounding box, a further calculation is performed to classify in which

area of the bounded box it lies. If the centre lies in the light-shaded region, contact has

occurred. If the centre lies within the bounding box but not in the light-shaded regions

(as is the case with circle A), the distance is measured between the circle’s centre and
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Figure A.2: Schematic showing case of two circular objects in contact.
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Figure A.3: Schematic showing case of circular objects making contact and near-contact
with a rectangular object.
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Figure A.4: Method of separation of two colliding circular objects.

the corresponding vertex of the bounding box. If this distance is less than the circle’s

radius, the centre lies within the dark-shaded region and contact has occurred.

A.2.2 Collision Model

The collision model works on a simple principle: if the angle between an agent and a

rectangular object with which it is colliding is greater than a critical angle θcrit (measured

from the object’s normal), then the agent is turned so as to be parallel with the object at

the point of collision. If the angle of collision is less than a critical angle, the agent slides

against the obstacle. This was illustrated in Figure 4.8. With circular objects, sliding

always occurs, as shown in 4.9 on page 37.

Since a discrete contact model is used, contact is only detected after the event. This

implies that, to prevent overlapping matter, two objects which have collided need to be

separated first, after which other collision rules can be applied (such as that described in

the previous paragraph). In the initial physics engine that was written for the simulator,

collisions were resolved by applying the principle of conservation of momentum together

with coefficients of restitution for agent-obstacle and agent-agent interactions.

In the present simplified model, the post-collision positions of the two objects are de-

termined as follows. For agent-obstacle collisions, obstacles’ positions do not change

(or from a physical perspective, obstacles are regarded as having inertial mass infinitely

higher than that of agents). For agent-agent collisions, agents are regarded as having

equal inertia and therefore their post-collision positions differ from their positions at the

moment of impact by an equal amount.
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Post-collision positions are calculated differently for circular-circular interactions and for

rectangular-circular interactions. In the former case, suppose two circular objects have

collided and overlap as shown in Figure A.4 on the previous page. For the moment,

suppose this is an agent-agent collision, so the circles are the same size. Construct a

direction vector ~R from the centre of circle A to the centre of circle B, as shown. Also

construct point M, the midpoint of ~R. Note that CA,CB,M are position vectors. Then

the new positions of the circle centres, C′
A
,C′

B
are given by

C′
A
= M−

~R

||~R||
× r C′

B
= M+

~R

||~R||
× r (A.7)

Equations A.7 are applicable for the case of an agent-agent collision, under the assumption

that two agents colliding will displace equally post-collision. However, this assumption

may not always be true, for at least two reasons. Firstly, the assumption has been made

that the agents have identical inertias; however, inertia is not relevant here as the agents

are in contact with the ground via their wheels. This means that in order for an agent to

be displaced, its wheels have to slip. The maximum restraining frictional force between

the ground and agent wheels is proportional to the normal force, i.e. mass of the agent.

Secondly, it is more likely for the agent to displace in the longitudinal than transverse

direction (although this may depend on the type of motor control used). However, the

model does not take this anisotropy into account, but rather assumes that agents’ wheels

are equally likely to slip in any direction. If this model were to be revised to eliminate

these assumptions, the way point M is determined would change. Instead of M being the

midpoint of ~R, it would lie at some other position on ~R in the area of overlap between

the two circles.

Equations A.7 are easily adapted for obstacle-agent collisions. Assume circle A is the

obstacle and circle B the agent. By simply moving point M to the intersection of ~R

and circle A’s circumference, and applying only the second of equations A.7, circle A will

remain stationary and circle B will move so it is no longer overlapping with A.

In the case of a circular object colliding with a rectangular object, a similar process of

separation is followed. If, after the collision time step, the centre of the circle lies in any

of the dark-shaded regions on Figure A.2.1 on page 130, it is treated as a circular-circular

interaction and the separation process just described is enforced. If the circular object’s

centre falls in a light-shaded region (such as circle B in the figure), the centre is moved

so that it is just touches the nearest rectangular edge.
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Figure A.5: A typical agent sensor configuration, showing the decomposition of the sensor
field of vision into a number of finite line segments.

A.3 Sensor Operation

In general, IR sensors have been modelled as having a finite field of vision covering an area

equal to a segment of a circle. The sensor returns a scalar value equal to the distance

to the closest object, or part thereof, that lies within the field of vision. The sensing

operation has been modelled by splitting the continuous sensor range into a number of

discrete, finite line segments, as shown in Figure A.5. The density of these line segments

is variable, and can be changed in the IRSensor class in the agents.py file.

When a sensor’s sense() function is called, each of these finite line segments (hereafter

referred to as ‘sensor line segments’) is checked against every object in the world, except

its ‘parent’ agent. This process involves first checking if a proximity condition is met,

to save computational expense on objects that are not near the sensor, followed by a

calculation of the shortest distance to the object, if it intersects with the line segment.

These calculations are detailed for circular and rectangular objects in Sections A.3.2 and

A.3.3, respectively.

A.3.1 Sensor Positioning

Each instance of the IRSensor class of infrared sensor objects has four intrinsic attributes:

centre position (Cs), orientation (Θs), depth of vision (r) and angular range. The first

two of these are in global coordinates (as they are actual properties of the sensor itself)

and are stored as such in the IRSensor object. However, the Agent object corresponding

to a particular sensor stores more information about the sensor, including the sensor’s
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Figure A.6: Translations and rotations from agent’s local coordinates to global coordi-
nates.

position in local coordinates (cs) and the sensor’s orientation in the local coordinate

system (θs).

Each sensor’s position in the agent’s local frame of reference does not change. However,

its global position and orientation will certainly change as the agent’s position and ori-

entation changes. Accordingly, it is required that at each time step the physics engine

transform the sensor’s position and orientation from the agent’s local coordinates to the

world’s global coordinates. For the purpose of this analysis let all uppercase symbols re-

fer to positions and orientations in the global coordinate system (C,Θ) and all lowercase

symbols to positions and orientations in the local coordinate system (c, θ), as shown in

Figure A.6.

Clearly, two operations are required. The origin of the local coordinate system first needs

to be translated to the global origin, and the local coordinates must be rotated to be

aligned with the global coordinates. If the agent has global orientation Θa, then the

corresponding rotation matrix R to transform all points in the agent’s local coordinates

to points in a coordinate system with origin at agent centre, but aligned with global

coordinates (shown as grey in figure), is

R =

[

cosΘa − sinΘa

sinΘa cosΘa

]

(A.8)

Note that the above transformation is a counter-clockwise rotation by Θa, because orien-

tations are positive in the counter-clockwise sense in the figure (see Section A.4 for a fuller
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Figure A.7: Schematic of the general case of a sensor line segment intersecting a circular
object.

discussion of coordinate systems used). Then, translating all points in this coordinate

system to global coordinates yields

Cs = Ca +Rcs

Substituting R from equation A.8,

Cs = Ca +

[

cosΘa − sinΘa

sinΘa cosΘa

]

cs (A.9)

Global sensor orientations are obtained trivially,

Θs = Θa + θs (A.10)

A.3.2 Sensing Circular Objects

The problem of sensing a circular object can be reduced to the problem of detecting

the intersection (if any) of a line segment and a circle. The general case of a sensor line

segment intersecting a circular object is shown in Figure A.7. We define an x,y-coordinate

system as shown, and we further define Cs,Co to be the sensor and object centres,

respectively, and rs, ro to be the sensor and object radii, respectively. The sensor line

segment makes an angle of θ with the positive x-axis. Definem = (mx,my) = (cos θ, sin θ)

to be a unit vector in the direction of the sensor line segment. All points X = (x, y) on

the circle satisfy the equation

||X−Co|| = ro

∴ (x− Co,x)
2 + (y − Co,y)

2 = r2o

(A.11)
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Similarly, all points on the sensor line segment satisfy

X = Cs + λm 0 ≤ λ ≤ rs

∴ x = Cs,x + λmx and y = Cs,y + λmy

(A.12)

Substituting (A.12) into (A.11), and defining d = Cs −Co = (dx, dy)

(dx + λmx)
2 + (dy + λmy)

2 = r2o

d2x + 2λdxmx + λ2m2
x + d2y + 2λdymy + λ2m2

y − r2o = 0

Grouping by λ,

λ2 (m2
x +m2

y)
︸ ︷︷ ︸

A

+λ (2dxmx + 2dymy)
︸ ︷︷ ︸

B

+ d2x + d2y − r2o
︸ ︷︷ ︸

C

= 0 (A.13)

where A, B, C are constants. Constant A must be equal to 1, since m2
x+m2

y = ||m|| ≡ 1.

Equation A.13 is a quadratic function of λ and can be solved by Vieta’s formula, viz.

λ =
−B ±

√
B2 − 4C

2
.

An assumption made about the sensor is that it will only detect the object nearest to

it. Therefore, the desired value of λ will be the smallest root of equation A.13 such that

0 ≤ λ ≤ rs, i.e. within sensor range. This will ensure that if there are two points of

intersection, the nearest is returned. If there are no acceptable solutions for λ, it means

that there are no circular objects within range of that sensor line segment (although other

line segments belonging to the same sensor may detect a circular object). The distance

from the sensor to the object is then simply the numerical value of λ, since ||m|| ≡ 1.

In order to reduce the computational cost for objects that are not near the sensor, a

broad proximity condition needs to be met before the above mathematical operations are

performed. For circular objects, this condition is

||d|| = ||Cs −Co|| ≤ (rs + ro) . (A.14)

This condition dictates that the sensor’s containing circle (i.e. the circle containing the

segment representing the sensor’s field of vision) must intersect with the boundary of the

circular object.
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Figure A.8: Schematic of the general case of a sensor line segment intersecting a rectan-
gular object.

A.3.3 Sensing Rectangular Objects

Sensing rectangular objects is slightly more complex than sensing circular objects, due

to the former being composed of four separate lines, as opposed to only one. Similar

to the method for sensing circular objects, however, the problem is reduced to finding

the intersection of a line segment and a rectangle. Let the rectangle’s coordinates be

x1, y1, x2, y2 as shown in Figure A.8. For each of x1, y1, x2, y2 define x̄1, ȳ1, x̄2, ȳ2 to be the

corresponding edge of the rectangle having either constant x or y value, as x2 is shown

in the figure. The sensor’s centre has coordinates C = (Cx, Cy), the sensor has a range

of r and its forward direction makes an angle θ with the positive x-axis.

Define the matrix d =

[

dx̄1
dȳ1

dx̄2
dȳ2

]

where dx̄i
, dȳi are the distances from the sensor centre

to x̄i and ȳi, respectively, along the infinite ray corresponding to the sensor line segment.

From plane trigonometry,

d =

[
x1−Cx

cos θ

y1−Cy

sin θ
x2−Cx

cos θ

y2−Cy

sin θ

]

(A.15)

It is now possible to calculate the points of intersection of the infinite ray with each of
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the edges x̄i, ȳi. Define

P =

[

y(x̄1) x(ȳ1)

y(x̄2) x(ȳ2)

]

where y(x̄i), x(ȳi) are the y and x values at which the sensor infinite ray intersects the

infinite rays described by x̄i, ȳi, respectively. Again, from simple trigonometry it follows

that

P =

[

Cy − dx̄1
sin θ Cx − dȳ1 cos θ

Cy − dx̄2
sin θ Cx − dȳ2 cos θ

]

(A.16)

Note that, in practice, each element of P should only be calculated if the corresponding

distance in d is positive and less than the sensor range, r, in order to save computational

expense. That is to say, calculate Pi,j iff 0 ≤ di,j ≤ r. Once the appropriate elements

of P have been computed, a check is performed to see whether the corresponding points

lie within the rectangle. Formally, the sensor line segment intersects edge x̄i iff y2 ≤
y(x̄i) ≤ y1 and similarly for edges ȳi. Once the edges which intersect the line segment

have been determined, the lowest corresponding distance value from d may be regarded

as the minimum distance from the sensor to the rectangle, provided the value falls in the

range 0 ≤ min(d) ≤ r.

Similar to the case with circular objects, a proximity condition must be met prior to

performing the above computations, in an attempt to reduce computational expense.

The proximity condition is

x1 − r ≤ cx ≤ x2 + r y2 − r ≤ cy ≤ y1 + r (A.17)

This condition can be visualized as a frame of thickness r placed around the object, as

shown in Figure A.9 on the following page. If the sensor centre lies within the frame or

the object (shaded region in the figure), then the proximity condition is met.

A.4 A Note on Coordinate Systems

The standard two-dimensional Cartesian axes form a right-handed system. That is to

say, the x-axis lies clockwise of the y-axis. However, in Tkinter (Python’s GUI), the axes

have a left-handed orientation, as shown in Figure A.10 on page 140. It was decided that,

since right-handed systems would likely be more familiar to users of the simulator, the

agents’ local coordinate systems should be right-handed. The rationale was that defining

new sensor configurations on agents would need to take place within the agents’ local
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Figure A.9: Proximity condition for a sensor line segment intersecting a rectangular
object.

coordinate systems, and so these coordinate systems should be as intuitive for the user

as possible. For the sake of consistency, and also to separate the theory of the simulator

from its particular implementation, the foregoing physics calculations were presented for

a right-handed global coordinate system.

Consequently, the global coordinate system remains left-handed, but agents’ local coor-

dinates are right-handed. This means that if creating custom maps by hand, as opposed

to using the map importer (see Section 4.9 on page 53), the ordinate axis increases in the

downward direction; the abscissa is unaffected. However, if defining new sensors on an

agent, the usual coordinate conventions apply (and are illustrated in Figure A.10). Note

that these conventions only apply for the AgentCir superclass that has been provided

with the simulator; if creating custom agent classes the default left-handed orientation

will apply.
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Figure A.10: Global and local coordinate systems in the simulator.
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Appendix B

Modelling of Fire-fighting

Environment

Since the details of the fire-fighting task assume a number of simplifications about the

nature of the task, it is not possible to use dimensional analysis to infer appropriate ‘ball

park’ figures for constants in the simulation, such as specific heat capacities, rates of heat

transfer, and so forth. Therefore, in order to ensure that the simulation progresses in

a fashion that allows meaningful analysis of the swarm-based behaviours it is designed

to elicit (such as implicit cooperation, emergent swarming, individual and group self-

preservation, etc), it is necessary to develop a mathematical model of the system so that

various parameters can be adjusted to ensure this outcome is met. It should be stressed

that this model is not intended to be physically accurate, nor is it intended to simulate

actual fire-fighting behaviours. Being a swarm behaviour simulator, the fundamental

purpose of this fire-fighting task is to demonstrate of how swarm behaviours emerge in a

distributed resource allocation problem, such as the assignment of fire-fighting agents to

fires.

This appendix will present the mathematical modelling that was performed to define

equations representing the physical system and determine suitable values for constants

in those equations. Note that the T used in this appendix refers to fire temperature and

is unrelated to the T used to indicate an agent’s propensity to explore the state-action

space, as it was used in Chapter 8.

We begin by modelling the rate at which the fire’s temperature grows when not being

extinguished. In the qualitative requirements for the model, given in Chapter 9, it is

required that the rate of change of a fire’s temperature increases as time progresses (thus

making the fire harder to extinguish). Additionally, it is required that a fire reach a
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Figure B.1: Fire temperature as a function of simulation time steps, when not being
extinguished.

terminal temperature. One such function that meets these requirements is

T = min(ek1t − 1, 1) . (B.1)

A graph of this function, for an arbitrary value of k1 is shown in Figure B.1. Differentiating

equation B.1 yields

dT

dt
= k1e

k1t = k1(T + 1) .

We are now able to add in the effect on a fire’s temperature of agents extinguishing that

fire. The qualitative requirements dictate that fires of larger area should be ‘harder’ to

extinguish, so we define

dT

dt
= k1(T + 1)− k2

A
n (B.2)

where k2 is a second constant, and n is the number of agents extinguishing that particular

fire. Equation B.2 may now be turned into an update rule which is performed at each
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time step of the simulation,

Tt+1 = min(Tt + k1(Tt + 1)− k2

A
n, 1) . (B.3)

We now consider the effect on an agent of being near a fire. Denote an agent’s temperature

by H. When near a fire, agents absorb heat at a rate proportional to the temperature

and size of the fire. Additionally, it is assumed that agents expel heat at a constant rate,

until their temperature reaches 0. This can be modelled mathematically as

dH

dt
= k3TA− k4 . (B.4)

The corresponding update rule, ensuring that the minimum value of 0 is enforced, is given

by

Ht+1 = max(Ht + k3TA− k4, 0) . (B.5)

Now that the system has been modelled to give the desired qualitative characteristics,

what remains is to determine the constants k1−4 that will ensure the simulation is feasible.

This entails considering a number of possible problems such as fires growing inexorably

large in a short space of time, agents’ abilities to extinguish fires being too small to

extinguish fires, or so large that fires are trivially extinguished by a single agent, and

so forth. Since the mathematical model used here is somewhat abstracted from reality,

it is not possible to use dimensional analysis to convert real-world constants into the

model constants k1−4. Therefore, the above equations need to be reworked to make the

constants calculable from certain desirable system properties, such as the time taken

for a fire to reach maximum temperature, time taken by a certain group of agents to

extinguish a particular fire, and so forth. Once suitable values for these constants have

been determined, they can be substituted into the model, and the simulation should

provide the desired characteristics.

Constant k1 was chosen by considering a fire that is not being extinguished, and solving

equation B.1 for the time taken for a fire to reach the maximum temperature of 1, starting

from approximately 0, thus

k1t = ln(T + 1)

k1 =
ln 2

t
(B.6)

Note that a fire cannot start from a temperature of exactly 0, since its rate of growth is

proportional to its temperature. Constant k2 is the rate which each agent extinguishes

a fire, and therefore will determine the time taken by a certain number of agents to
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extinguish a particular fire, starting at a particular temperature T0. Equation B.2 is a

linear first-order differential equation, and has a solution of the form

T = αek1t − k1 − k2
A
n

k1
(B.7)

for a suitable constant α. If we assume that at time t = 0 the temperature of the fire is

T = T0, then substituting into (B.7), we obtain

α = T0 + 1− k2n

k1A
. (B.8)

We are interested in the time taken to extinguish the fire, so we denote this time as t1,

where T (t1) = T1 = 0. Substituting (B.8) into (B.7) and rearranging,

(1− k2n

k1A
)ek1t1 + T0e

k1t1 = (1− k2n

k1A
)

∴ (1− k2n

k1A
)(ek1t1 − 1) = −T0e

k1t1

∴

k2n

k1A
(ek1t1 − 1) = T0e

k1t1 + ek1t1 − 1 .

Finally, solving for k2,

k2 =
k1A
n
T0e

k1t1 + ek1t1 − 1

ek1t1 − 1
(B.9)

Constant k2 can therefore be determined, by means of equation B.9, from the time (t1)

it should take n agents to extinguish a fire of area A and initial temperature T0.

Constants k3, k4 control the rates at which agents absorb heat (when near a fire) and expel

heat (at a constant rate, regardless of proximity to a fire). From the form of equation

B.4 it is clear that there must be a critical value of TA at which the rate of agent heat

absorption equals the rate of heat expulsion. We base our analysis on the largest fire on

the map, with area Amax , and denote the critical temperature Tc. At this temperature,
dH
dt

= 0. Substituting this into equation B.4, we obtain

k4 = TcAmaxk3 . (B.10)

We will require a second equation in terms of k3, k4 in order to obtain numerical values

for these constants. It is possible to place a constraint on these constants by limiting the

maximum magnitude of dH
dt

to a constant value, such as the number 1. From equation
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B.4,

max
dH

dt
= TmaxAmaxk3 − k4

∴ 1 = Amaxk3 − k4 .

Substituting (B.10),

1 = Amax (1− Tc)k3

∴ k3 =
1

Amax (1− Tc)
. (B.11)

Now that expressions have been found for physical constants k1−4, it remains to determine

expressions for the H values at which agents choose to leave and rejoin fires, denoted

by Hleave and Hjoin , respectively. The maximum value of dH
dt

has been set to 1, which

corresponds to the largest fire on the map, at its maximum temperature of 1. If we

consider an agent attempting to extinguish this fire starting from H = 0, and define tm

to be the maximum time the agent will stay at that fire before leaving, then

Hleave =

∫ tm

0

H ′(t) dt .

For small values of t, H ′(t) ≈ H ′(0) = 1. Thus,

Hleave ≈
∫ tm

0

1 dt

∴ Hleave ≈ tm . (B.12)

Note that equation B.12 has assumed that the agent’s H value upon reaching the fire was

0: if it were any higher (any value up to Hjoin is possible), the agent would remain at the

fire for less time and equation B.12 therefore provides an upper bound.

When an agent’s H value reaches Hleave , the agent leaves the fire and will only return

to a fire once its H value has decreased to Hjoin . This means constant Hjoin may be

determined by the amount of time an agent should spend away from a fire, denoted by

ta. From equation B.4, an agent’s H value decreases at a rate of k4 when not near a fire,

to a minimum value of 0 (by definition). Therefore,

Hjoin = max(Hleave − k4ta, 0) . (B.13)
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Appendix C

User Instructions for Simulator

This appendix presents a minimal set of instructions for use of the simulator developed

in this project, named RAS2D (Robotic Agent Simulator in 2 Dimensions).

RAS2D was developed on i386 Linux using Python 3. It is almost certain to work with

Python 3 on any Unix R© -like system, and will most likely work without modification on

other platforms (e.g. Windows, iOS) and architectures (e.g. AMD64). It will not work

“out of the box” on Python 2, due to a number of Tkinter (Python’s implementation of

the Tk GUI) functions being renamed between Python 2 and 3, including the name of

the module itself.

As was mentioned in the report, the package has three executable files. Simulation is

accomplished by means of input files with extension .job, which contain all specifications

for a particular simulation. The three basic modes of operation are given below.

Core simulation.

The basic procedure for operation of the simulator is as follows. The user creates

a .job file in a text editor, normally by modifying the sample .job files provided

with the simulator package. The job file specifies the map, type and number of

agents, as well as the control functions used by agents. It can also include other

task-specific scripts, e.g. for Q-learning or fire-fighting tasks.

Once an appropriate job file has been created, the user runs the main simulation

program, sim.py. This program takes a job file as input, and either displays the

simulation on-screen in real-time, saves it to disk, or both. If the simulation is saved

to disk, it is written to a .sim file.

Visualisation. To visualise a simulation that has previously been saved, run the viewer.py

script. When prompted, select the appropriate .sim file and visualisation will be-

146



University of Cape Town Department of Mechanical Engineering

gin. To adjust playback speed, speed regulation can be turned on and off by setting

variable speedReg (within viewer.py) either to True or False, respectively.

Map creation. The executable mapImporter.py may be used to convert SVG images

into the native .map format used by the simulator. At present, only circular and

rectangular elements are supported. To import a map, run the script and when

prompted, select the appropriate input .svg file and output .map file.

The scripts comprising the RAS2D package are thoroughly commented, allowing easy

modification of their operation. Nevertheless, a set of instructions for performing custom

modifications on each script can be found in the directory instructions, located in the

main package directory. The instructions for a file with name filename.py may be found

in instructions/filename.py.instr.
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Appendix D

Examples Included on Disc

D.1 Job and Simulation Files

Simulation .job and .sim files are provided on disc for the simulations referred to in the

report. The files included are:

collisionAvoidance

agglomeration

chainFormation

QlearningSingleAgent

QlearningMultiAgent

fireFighting1

fireFighting2.

Note that running a particular job file might not yield exactly the same behaviour as

the corresponding visualisation file that has been provided. This is because simulations

involving randomness can have different behaviour when run on different machines, due

to slight differences in the pseudorandom number generators.

D.2 Maps

A number of sample maps are included with the RAS2D package. These maps are

contained in files original.map, maze.map, openspace.map and openspace FIRE.map,

and are shown here for the reader’s convenience. Also provided on disc are the SVG

graphics files that were used to create the maps using the map importer (see Section 4.9

on page 53). These files have the same base names, but with extension .svg.
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Figure D.1: A map with circular and rectangular obstacles, showing a moderate degree
of complexity. Filename: original.map.

Figure D.2: A map with circular and rectangular obstacles, showing a low degree of
complexity. Filename: sparse.map.
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Figure D.3: A map with four walls and no internal obstacles. Filename: openspace.map.

Figure D.4: A map with four walls and a number of internal fires. Filename:
openspace FIRE.map.
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Appendix E

Learning Outcomes

This appendix aims to give a brief review of the knowledge that was gained by the student

during the course of this project.

Broadly speaking, much of the content and theory in the project had not been encountered

by the student before undertaking the project. Topics in artificial intelligence are not

covered by the mechanical engineering curriculum and the student was thus unexposed

to these areas of knowledge. The student therefore had to first acquaint himself with

the appropriate concepts, and then perform in-depth research to reach a point where

programmatic implementation of AI techniques was possible.

Despite this, much of the physics, dynamics and mathematics required for the physical

simulator had been taught to the student, making these sections of the project compar-

atively easier. While the student had not previously been exposed to formal algorithm

analysis and had to undertake research into topics such as algorithmic complexity, previ-

ous courses in numerical analysis proved helpful in troubleshooting irregular behaviour.

In terms of the programmatic work, the student had only been formally exposed to

Matlab as a programming language. However, Matlab was not deemed to be a suitable

choice of language for the simulator, requiring the student to learn a completely new

programming language, namely Python. Although this was done on a self-taught basis,

no significant problems were experienced and the student was able to reach a level of

proficiency sufficient to create the entire simulator package in Python.
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Appendix F

Exit Level Outcome Forms
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